SUPERCONVERGENCE RECOVERY TECHNIQUE AND A POSTERIORI ERROR ESTIMATORS

被引:90
作者
ZHU, JZ
机构
[1] Institute of Numerical Methods in Engineering, University College of Swansea, Swansea, SA2 8PP, Singleton Park
关键词
D O I
10.1002/nme.1620300707
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new superconvergence recovery technique for finite element solutions is presented and discussed for one dimensional problems. By using the recovery technique a posteriori error estimators in both energy norm and maximum norm are presented for finite elements of any order. The relation between the postprocessing and residual types of energy norm error estimators has also been demonstrated. Copyright © 1990 John Wiley & Sons, Ltd
引用
收藏
页码:1321 / 1339
页数:19
相关论文
共 27 条
[1]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[2]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615
[3]   A POSTERIORI ERROR ANALYSIS OF FINITE-ELEMENT SOLUTIONS FOR ONE-DIMENSIONAL PROBLEMS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (03) :565-589
[4]  
BABUSKA I, 1986, ACCURACY ESTIMATES A
[5]  
BAK RE, 1986, ACCURACY ESTIMATES A, P119
[6]   OPTIMAL STRESS LOCATIONS IN FINITE-ELEMENT MODELS [J].
BARLOW, J .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1976, 10 (02) :243-251
[7]  
CHEN CM, 1979, NUMER MATH J CHINESE, V1, P73
[8]   ON AN H-TYPE MESH-REFINEMENT STRATEGY BASED ON MINIMIZATION OF INTERPOLATION ERRORS [J].
DEMKOWICZ, L ;
DEVLOO, P ;
ODEN, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1985, 53 (01) :67-89
[9]   GALERKIN APPROXIMATIONS FOR 2 POINT BOUNDARY PROBLEM USING CONTINUOUS, PIECEWISE POLYNOMIAL SPACES [J].
DOUGLAS, J ;
DUPONT, T .
NUMERISCHE MATHEMATIK, 1974, 22 (02) :99-109
[10]  
GAGO JPDR, 1983, INT J NUMER METH ENG, V19, P1621