AN APPLICATION OF AOMOTO-GELFAND HYPERGEOMETRIC-FUNCTIONS TO THE SU(N) KNIZHNIK-ZAMOLODCHIKOV EQUATION

被引:38
作者
MATSUO, A
机构
[1] Research Institute for Mathematical Sciences, Kyoto University, Kyoto
关键词
D O I
10.1007/BF02102089
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Solutions to the Knizhnik-Zamolodchikov equation for Verma modules of the Lie algebra {Mathematical expression} are explicitly given by certain integrals called Aomoto-Gelfand hypergeometric functions. © 1990 Springer-Verlag.
引用
收藏
页码:65 / 77
页数:13
相关论文
共 13 条
[2]  
Aomoto K., 1977, SCI PAPERS COLLEGE G, V27, P49
[3]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[4]   THE 4-POINT CORRELATIONS OF ALL PRIMARY OPERATORS OF THE D=2 CONFORMALLY INVARIANT SU(2) SIGMA-MODEL WITH WESS-ZUMINO TERM [J].
CHRISTE, P ;
FLUME, R .
NUCLEAR PHYSICS B, 1987, 282 (02) :466-494
[5]  
CHRISTIE P, 1986, THESIS BONN U
[6]  
DATE E, YANGBAXTER EQUATIONS
[7]  
FEIGIN BL, 1989, REPRESENTATIONS AFFI
[8]  
KNIZHNIK VG, 1984, NUCL PHYS B, V247, P83, DOI 10.1016/0550-3213(84)90374-2
[9]  
SCHECHTMAN VV, 1989, INTEGRAL REPRESENTAT
[10]   FOCK SPACE REPRESENTATIONS OF THE VIRASORO ALGEBRA - INTERTWINING-OPERATORS [J].
TSUCHIYA, A ;
KANIE, Y .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1986, 22 (02) :259-327