BREAKDOWN OF FROZEN MOTION OF VORTICITY FIELD AND VORTICITY RECONNECTION

被引:24
作者
KIDA, S [1 ]
TAKAOKA, M [1 ]
机构
[1] KYOTO UNIV,FAC SCI,DEPT PHYS,KYOTO 606,JAPAN
关键词
D O I
10.1143/JPSJ.60.2184
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The perpendicular components to vorticity of the Laplacian of vorticity multiplied by the kinematic viscosity, nu-(nabla-2-omega) perpendicular-to, represents the rate of breakdown due to viscous effects of the frozen motion of vortex lines with fluid particles, whereas the parallel component, nu-(nabla-2-omega) parallel-to, represents the deviation of the stretching rates of vortex and fluid line elements. The spatial distributions of high-value regions of these two components and vorticity are compared in detail in several analytical and numerical flows. It is found that nu-(nabla-2-omega) parallel-to takes large negative values typically inside high-vorticity regions. On the other hand, nu-\(nabla-2-omega) perpendicular-to \ is large where the high-vorticity regions are interacting, which suggests that nu-(nabla-2-omega) perpendicular-to may serve as a good measure of the degree of vorticity reconnection.
引用
收藏
页码:2184 / 2196
页数:13
相关论文
共 23 条
[1]  
ARNOLD V, 1965, CR HEBD ACAD SCI, V261, P17
[2]   NUMERICAL STUDY OF VORTEX RECONNECTION [J].
ASHURST, WT ;
MEIRON, DI .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1632-1635
[3]  
Axford W. I., 1984, GEOPHYS MONOGR SER, V30, P1
[4]  
Burgers J.M., 1948, ADV APPL MECH, V1, P171, DOI [10.1016/S0065-2156(08)70100-5, DOI 10.1016/S0065-2156(08)70100-5]
[5]   NEW SOLUTIONS OF KINEMATIC DYNAMO PROBLEM [J].
CHILDRESS, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (10) :3063-+
[6]   COLLIDING VORTEX RINGS [J].
FOHL, T ;
TURNER, JS .
PHYSICS OF FLUIDS, 1975, 18 (04) :433-436
[7]  
GREENE JM, 1990, 1989 P IUTAM S, P478
[8]  
Helmholtz H., 1868, PHILOS MAG SER, V4, P337, DOI [10.1080/14786446808640073, DOI 10.1080/14786446808640073]
[9]   SIMULATION OF VORTEX RECONNECTION [J].
KERR, RM ;
HUSSAIN, F .
PHYSICA D, 1989, 37 (1-3) :474-484
[10]   KOLMOGOROV SIMILARITY IN FREELY DECAYING TURBULENCE [J].
KIDA, S ;
MURAKAMI, Y .
PHYSICS OF FLUIDS, 1987, 30 (07) :2030-2039