THE EFFECT OF TEMPERATURE UPON THE PERMEATION OF POLAR AND IONIC SOLUTES THROUGH HUMAN EPIDERMAL MEMBRANE

被引:98
作者
PECK, KD
GHANEM, AH
HIGUCHI, WI
机构
[1] Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, 84112
关键词
D O I
10.1002/jps.2600840813
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The temperature dependence of in vitro permeation through human epidermal membrane (HEM) was determined for urea, mannitol, tetraethylammonium ion (TEA), and corticosterone. The effect of temperature upon HEM electrical resistance was also measured. The majority of the experiments invoked measuring the permeability coefficients of a specific permeant at 27 degrees C and 39 degrees C for a given HEM sample, the electrical resistance was also measured at each temperature. Similar experiments were also conducted with a model synthetic porous membrane. The effect of temperature was quantitated as the ratio of the permeability at 39 degrees C to the permeability at 27 degrees C for each permeant. These ratios observed for HEM with urea, mannitol, and TEA as the permeants were 1.66 +/- 0.05, 1.76 +/- .0.14, and 1.71 +/- 0.11, respectively. The change in temperature was shown to have a similar effect upon the electrical conductance of the HEM samples. The observed ratio for corticosterone permeation was 4.5 +/- 0.4. The experimental ratios observed for the three polar/ionic permeants were shown to approach those obtained from the model porous membrane and differed greatly from the ratio observed for the more lipophilic corticosterone, indicating differences in the effective transport mechanism/pathway for these classes of permeants. The permeability of urea was also observed to be inversely proportional to the electrical resistance of the HEM samples; this relationship was shown to be independent of temperature over the temperature range studied. The temperature dependence data and the observed relationship between urea permeability and electrical resistance strongly support the existence of a porous permeation pathway through the HEM as an operative diffusional route for polar/ionic permeants.
引用
收藏
页码:975 / 982
页数:8
相关论文
共 27 条
[1]   ETHER WATER PARTITIONING AND PERMEABILITY THROUGH NUDE-MOUSE SKIN INVITRO .2. HYDROCORTISONE 21-NORMAL-ALKYL ESTERS, ALKANOLS AND HYDROPHILIC COMPOUNDS [J].
ACKERMANN, C ;
FLYNN, GL ;
SMITH, WM .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 1987, 36 (01) :67-71
[2]   MECHANISM OF PERCUTANEOUS ABSORPTION .3. EFFECT OF TEMPERATURE ON TRANSPORT OF NON-ELECTROLYTES ACROSS SKIN [J].
BLANK, IH ;
SCHEUPLEIN, RJ ;
MACFARLANE, DJ .
JOURNAL OF INVESTIGATIVE DERMATOLOGY, 1967, 49 (06) :582-+
[3]  
Bronaugh RL, 1989, PERCUTANEOUS ABSORPT, P27
[4]  
COOPER E R, 1987, Journal of Controlled Release, V6, P23, DOI 10.1016/0168-3659(87)90061-7
[5]   THE ROUTES OF PENETRATION OF IONS AND 5-FLUOROURACIL ACROSS HUMAN SKIN AND THE MECHANISMS OF ACTION OF TERPENE SKIN PENETRATION ENHANCERS [J].
CORNWELL, PA ;
BARRY, BW .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 1993, 94 (1-3) :189-194
[6]   HINDERED TRANSPORT OF LARGE MOLECULES IN LIQUID-FILLED PORES [J].
DEEN, WM .
AICHE JOURNAL, 1987, 33 (09) :1409-1425
[7]  
Flynn G. L., 1990, PHYSICOCHEMICAL DETE, P93
[8]  
GHANEM A-H, 1987, Journal of Controlled Release, V6, P75, DOI 10.1016/0168-3659(87)90065-4
[9]   STRATUM-CORNEUM LIPID PHASE-TRANSITIONS AND WATER BARRIER PROPERTIES [J].
GOLDEN, GM ;
GUZEK, DB ;
KENNEDY, AH ;
MCKIE, JE ;
POTTS, RO .
BIOCHEMISTRY, 1987, 26 (08) :2382-2388
[10]   AN APPLICATION OF THE HYDRODYNAMIC PORE THEORY TO PERCUTANEOUS-ABSORPTION OF DRUGS [J].
HATANAKA, T ;
MANABE, E ;
SUGIBAYASHI, K ;
MORIMOTO, Y .
PHARMACEUTICAL RESEARCH, 1994, 11 (05) :654-658