TEXTURE SEGMENTATION VIA HAAR FRACTAL FEATURE ESTIMATION

被引:15
作者
KAPLAN, LM
KUO, CCJ
机构
[1] UNIV SO CALIF, INST SIGNAL & IMAGE PROC, LOS ANGELES, CA 90089 USA
[2] UNIV SO CALIF, DEPT ELECT ENGN SYST, LOS ANGELES, CA 90089 USA
关键词
D O I
10.1006/jvci.1995.1032
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We examine an approach to texture segmentation that uses the fractal dimensions along the 1-D cross sections of 2-D texture data as image features, where an effective Haar transform fractal estimation algorithm is utilized. The major advantage of the Haar fractal estimator is its computational efficiency along with robustness. The method is fast due to the pyramid structure of the Haar transform and nearly optimal in the maximum likelihood sense for fractional Brownian motion (fBm) data. We compare the low complexity of this new algorithm with the complexity of existing fractal feature extraction techniques, and test our new method on fBm data, real Brodatz textures, and natural scenes. (C) 1995 Academic Press, Inc
引用
收藏
页码:387 / 400
页数:14
相关论文
共 44 条