GEOMETRIC METHODS FOR NONLINEAR PROCESS-CONTROL .1. BACKGROUND

被引:189
作者
KRAVARIS, C [1 ]
KANTOR, JC [1 ]
机构
[1] UNIV NOTRE DAME,DEPT CHEM ENGN,NOTRE DAME,IN 46556
关键词
D O I
10.1021/ie00108a001
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This is the first part of a review paper for geometric methods in nonlinear process control. We review here the mathematical and systems theory background, including linear results, tools from differential geometry, nonlinear inversion, and zero dynamics. The concept of feedback linearization of nonlinear systems is introduced at the end. © 1990, American Chemical Society. All rights reserved.
引用
收藏
页码:2295 / 2310
页数:16
相关论文
共 79 条
[1]  
ADEBEKUN AK, 1989, 1989 P AM CONTR C PI, P1076
[2]   A MULTIVARIABLE NONLINEAR SELF-TUNING CONTROLLER [J].
AGARWAL, M ;
SEBORG, DE .
AICHE JOURNAL, 1987, 33 (08) :1379-1386
[3]   NONLINEAR HEAT-EXCHANGER CONTROL THROUGH THE USE OF PARTIALLY LINEARIZED CONTROL VARIABLES [J].
ALSOP, AW ;
EDGAR, TF .
CHEMICAL ENGINEERING COMMUNICATIONS, 1989, 75 :155-170
[5]   GLOBAL NONLINEAR CONTROL OF A CONTINUOUS STIRRED TANK REACTOR [J].
ALVAREZ, J ;
ALVAREZ, J ;
GONZALEZ, E .
CHEMICAL ENGINEERING SCIENCE, 1989, 44 (05) :1147-1160
[6]  
ALVAREZ J, 1988, 1988 P AM CONTR C AT, P233
[7]  
ALVAREZ J, 1988, 1988 P AUT CONTR C A, P1112
[8]  
[Anonymous], 1986, NONLINEAR DYNAMICAL
[9]  
[Anonymous], 1980, LINEAR SYSTEMS
[10]  
ATHANS M, 1966, OPTIMAL CONTROL