A NEARLY BEST-POSSIBLE APPROXIMATION ALGORITHM FOR NODE-WEIGHTED STEINER TREES

被引:251
作者
KLEIN, P [1 ]
RAVI, R [1 ]
机构
[1] PRINCETON UNIV,DEPT COMP SCI,PRINCETON,NJ 08544
关键词
D O I
10.1006/jagm.1995.1029
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give the first approximation algorithm for the node-weighted Steiner tree problem. Its performance guarantee is within a constant factor of the best possible unless ($) over bar P superset of or equal to NP. (($) over bar P stands for the complexity class deterministic quasi-polynomial time, or DTIME[n(polylog) (n)].) Our algorithm generalizes to handle other network-design problems. (C) 1995 Academic Press, Inc.
引用
收藏
页码:104 / 115
页数:12
相关论文
共 25 条
  • [1] AGRAWAL A, 1991, 23RD P ANN ACM S THE, P134
  • [2] [Anonymous], 1980, MATH JAPONICA
  • [3] BERMAN P, 1991, COMMUNICATION
  • [4] Chvatal V., 1979, Mathematics of Operations Research, V4, P233, DOI 10.1287/moor.4.3.233
  • [5] DREYFUS SE, 1971, NETWORKS, V1, P195
  • [6] Edmonds J, 1973, MATHEMATICAL PROGRAM, V5, P88
  • [7] GEOMANS MX, 1992, 3RD P ANN ACM SIAM S, P307
  • [8] Hakimi S. L., 1971, Networks, V1, P113, DOI 10.1002/net.3230010203
  • [9] STEINER TREE PROBLEMS
    HWANG, FK
    RICHARDS, DS
    [J]. NETWORKS, 1992, 22 (01) : 55 - 89
  • [10] APPROXIMATION ALGORITHMS FOR COMBINATORIAL PROBLEMS
    JOHNSON, DS
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1974, 9 (03) : 256 - 278