IN-VITRO STRUCTURAL AND FUNCTIONAL-RELATIONSHIPS BETWEEN PREOSTEOCLASTIC AND BONE ENDOTHELIAL-CELLS - A JUXTACRINE MODEL FOR MIGRATION AND ADHESION OF OSTEOCLAST PRECURSORS

被引:26
作者
FORMIGLI, L
ORLANDINI, SZ
BENVENUTI, S
MASI, L
PINTO, A
GATTEI, V
BERNABEI, PA
ROBEY, PG
COLLINOSDOBY, P
BRANDI, ML
机构
[1] UNIV FLORENCE, SCH MED, DEPT CLIN PHYSIOPATHOL, ENDOCRINE UNIT, I-50139 FLORENCE, ITALY
[2] UNIV FLORENCE, DEPT ANAT, I-50139 FLORENCE, ITALY
[3] UO HEMATOL, I-50139 FLORENCE, ITALY
[4] CTR RIFERIMENTO ONCOL, LEUKEMIA UNIT, I-3308 AVIANO, ITALY
[5] NIDR, BONE RES BRANCH, BETHESDA, MD 20892 USA
[6] WASHINGTON UNIV, DEPT BIOL, ST LOUIS, MO 63130 USA
[7] WASHINGTON UNIV, DIV BONE & MINERAL METAB, ST LOUIS, MO 63130 USA
关键词
D O I
10.1002/jcp.1041620206
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The role of vascularization in the process of bone resorption has not been clarified. The interactions between vascular endothelium and osteoclast progenitors were analyzed using clonal cell lines of bone-derived endothelial and preosteoclastic cells. Insulin-like growth factor I is a major chemotactic stimulator of preosteoclastic cell migration mediated by bone endothelial cells. Osteoclast precursors rapidly adhered to bone endothelial monolayers. This phenomenon appeared to be cell-specific and mediated through the binding of vitronectin and fibronectin receptors to fibronectin. In addition, direct contact with bone endothelial cells induced osteoclast progenitors to differentiate into more mature elements, with the tendency to cluster together to form large multinucleated cells. These findings demonstrated specific in vitro interactions between bone endothelial cells and osteoclast progenitors, offering a new model for understanding the molecular mechanisms which direct the processes of osteoclast recruitment and ontogeny. (C) 1995 Wiley-Liss, Inc.
引用
收藏
页码:199 / 212
页数:14
相关论文
共 83 条
[1]  
Abe E., Ishimi Y., Takahashi N., Akatsu T., Ozawa H., Yamana H., Yoshiki S., Suda T., A differentation‐inducing factor produced by the osteoblastic cells line MC3T3‐E1 stimulates bone resorption by promoting osteoclast formation, J. Bone Miner. Res., 3, pp. 635-645, (1988)
[2]  
Abe F., Miyama C., Sakagami H., Takeda M., Komro K., Yamazaki T., Yoshiki S., Suda T., Differentiation of mouse myeloid leukemia cells induced by 1α,25‐dihydroxyvitamin D3, Proc. Natl. Acad. Sci. U.S.A., 78, pp. 4990-4994, (1981)
[3]  
Albelda S.M., Buck C.A., Integrins and other adhesion molecules, FASEB J., 4, pp. 2868-2880, (1990)
[4]  
Ascensao J.L., Vercellotti G.M., Jacob H.S., Zanjani E.D., Role of endothelial cells in human hemopoiesis: Modulation of mixed colony growth in vitro, Blood, 65, pp. 553-558, (1984)
[5]  
Athanasou N.A., Quinn J., Horton M.A., McGee J.O.D., New sites of normal vitronectin receptor immunoreactivity detected with osteoclast‐reacting monoclonal antibodies 13C2 and 23C6, Bone Miner., 8, pp. 7-22, (1990)
[6]  
Banerjee D.K., Ornberg R., Youdim M.B.H., Heldman E., Pollard H.B., Endothelial cells from bovine adrenal medulla develop capillary‐like growth patterns in culture, Proc. Natl. Acad. Sci. U.S.A., 82, pp. 4702-4706, (1985)
[7]  
Bauer J.S., Schreiner C.L., Giancotti F.G., Ruoslahti E., Juliano R.L., Motility of fibronectin receptor‐deficient cells on fibronectin and vitronectin: Collaborative interactions among integrins, J. Cell Biol., 116, pp. 477-487, (1992)
[8]  
Bonner W.M., Laskey R.A., A film detection method for tritium‐labeled proteins and nucleic acids in polyacrylamide gels, Eur. J. Biochem., 46, pp. 83-88, (1974)
[9]  
Boyden S., The chemotactic effect of a mixture of antibody and antigen on polymorphonuclear leukocytes, J. Exp. Med., 115, pp. 453-466, (1962)
[10]  
Brandi M.L., Ornberg R., Sakaguchi K., Curcio F., Fattorossi A., Lelkes P.I., Matsui T., Zimering M., Aurbach G.D., Establishment and characterization of a clonal line of parathyroid endothelial cells, FASEB J., 4, pp. 3152-3158, (1990)