LAPLACE APPROXIMATIONS FOR POSTERIOR EXPECTATIONS WHEN THE MODE OCCURS AT THE BOUNDARY OF THE PARAMETER SPACE

被引:21
作者
ERKANLI, A
机构
关键词
BAYESIAN INFERENCE; SADDLE-POINT APPROXIMATION; 2ND-ORDER ASYMPTOTICS; TIERNEY-KADANE APPROXIMATION;
D O I
10.2307/2291221
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article gives asymptotic expansions tor posterior expectations when the mode is on the boundary of the parameter space. The idea, based on the divergence theorem, is to reduce the high-dimensional integrals over the parameters space to surface integrals over the boundary of the parameter space and then apply the usual interior-mode Laplace method to the latter integrals. It is shown that these approximations have second-order accuracy. The method is illustrated with applications to a two-sample binomial problem and a random-effects model.
引用
收藏
页码:250 / 258
页数:9
相关论文
共 27 条
[1]  
Bleistein N., 1986, ASYMPTOTIC EXPANSION
[2]  
Box G.E.P., 1992, BAYESIAN INFERENCE S
[3]  
CHEN CF, 1985, J ROY STAT SOC B MET, V47, P540
[4]   SADDLEPOINT APPROXIMATIONS IN STATISTICS [J].
DANIELS, HE .
ANNALS OF MATHEMATICAL STATISTICS, 1954, 25 (04) :631-650
[5]  
Erdelyi A., 1956, ASYMPTOTIC EXPANSION
[6]  
ERKANLI A, 1991, 522 CARN MELL U DEP
[7]   SAMPLING-BASED APPROACHES TO CALCULATING MARGINAL DENSITIES [J].
GELFAND, AE ;
SMITH, AFM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) :398-409
[8]  
Johnson R. A., 1979, SANKHYA B, V41, P196
[9]  
JONES DS, 1980, THEOYR GENERALIZED F
[10]  
Kass R. E., 1989, STAT SCI, V4, P310, DOI DOI 10.1214/SS/1177012386