TRANSFORMING GROWTH-FACTOR-BETA REPRESSES THE ACTIONS OF MYOGENIN THROUGH A MECHANISM INDEPENDENT OF DNA-BINDING

被引:149
作者
BRENNAN, TJ [1 ]
EDMONDSON, DG [1 ]
LI, L [1 ]
OLSON, EN [1 ]
机构
[1] UNIV TEXAS,MD ANDERSON CANCER CTR,DEPT BIOCHEM & MOLEC BIOL,1515 HOLCOMBE BLVD,BOX 117,HOUSTON,TX 77030
关键词
MYOGENESIS; ID;
D O I
10.1073/pnas.88.9.3822
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Myogenin belongs to a family of regulatory factors that can activate myogenesis when transfected into nonmyogenic cells. A conserved DNA sequence, known as an E box, serves as the target for binding and trans-activation by myogenin. Using 10T1/2 fibroblasts that constitutively express a transfected myogenin cDNA, we show that myogenin accumulates in the nucleus but is unable to initiate myogenesis when cells are maintained with transforming growth factor-beta (TGF-beta) or high serum. Although the final effect of TGF-beta and high serum-inhibition of myogenesis-was the same their effects on the DNA-binding properties of myogenin in vitro differed. TGF-beta did not affect the ability of myogenin to bind DNA, whereas serum diminished the in vitro DNA-binding activity of myogenin. The helix-loop-helix (HLH) protein Id, postulated to inhibit DNA binding of other HLH proteins, was induced by high serum but not by TGF-beta. The presence of Id correlated with the failure of myogenin to bind the muscle creatine kinase enhancer in vitro. These findings suggest that serum can inhibit myogenesis by attenuating the DNA-binding activity of myogenin, possibly as a consequence of Id protein expression, whereas TGF-beta acts through a mechanism distal to DNA sequence recognition by myogenin and independent of Id.
引用
收藏
页码:3822 / 3826
页数:5
相关论文
共 42 条
[1]   THE PROTEIN ID - A NEGATIVE REGULATOR OF HELIX-LOOP-HELIX DNA-BINDING PROTEINS [J].
BENEZRA, R ;
DAVIS, RL ;
LOCKSHON, D ;
TURNER, DL ;
WEINTRAUB, H .
CELL, 1990, 61 (01) :49-59
[2]   TRANSCRIPTIONAL ACTIVATION DOMAIN OF THE MUSCLE-SPECIFIC GENE-REGULATORY PROTEIN MYF5 [J].
BRAUN, T ;
WINTER, B ;
BOBER, E ;
ARNOLD, HH .
NATURE, 1990, 346 (6285) :663-665
[3]   MYF-6, A NEW MEMBER OF THE HUMAN GENE FAMILY OF MYOGENIC DETERMINATION FACTORS - EVIDENCE FOR A GENE-CLUSTER ON CHROMOSOME-12 [J].
BRAUN, T ;
BOBER, E ;
WINTER, B ;
ROSENTHAL, N ;
ARNOLD, HH .
EMBO JOURNAL, 1990, 9 (03) :821-831
[4]   DIFFERENTIAL EXPRESSION OF MYOGENIC DETERMINATION GENES IN MUSCLE-CELLS - POSSIBLE AUTOACTIVATION BY THE MYF GENE-PRODUCTS [J].
BRAUN, T ;
BOBER, E ;
BUSCHHAUSENDENKER, G ;
KOTZ, S ;
GRZESCHIK, KH ;
ARNOLD, HH .
EMBO JOURNAL, 1989, 8 (12) :3617-3625
[5]   A NOVEL HUMAN-MUSCLE FACTOR RELATED TO BUT DISTINCT FROM MYOD1 INDUCES MYOGENIC CONVERSION IN 10T1/2 FIBROBLASTS [J].
BRAUN, T ;
BUSCHHAUSENDENKER, G ;
BOBER, E ;
TANNICH, E ;
ARNOLD, HH .
EMBO JOURNAL, 1989, 8 (03) :701-709
[6]   MYOGENIN RESIDES IN THE NUCLEUS AND ACQUIRES HIGH-AFFINITY FOR A CONSERVED ENHANCER ELEMENT ON HETERODIMERIZATION [J].
BRENNAN, TJ ;
OLSON, EN .
GENES & DEVELOPMENT, 1990, 4 (04) :582-595
[7]   ABERRANT REGULATION OF MYOD1 CONTRIBUTES TO THE PARTIALLY DEFECTIVE MYOGENIC PHENOTYPE OF BC3H1 CELLS [J].
BRENNAN, TJ ;
EDMONDSON, DG ;
OLSON, EN .
JOURNAL OF CELL BIOLOGY, 1990, 110 (04) :929-937
[8]   IDENTIFICATION OF A MYOCYTE NUCLEAR FACTOR THAT BINDS TO THE MUSCLE-SPECIFIC ENHANCER OF THE MOUSE MUSCLE CREATINE-KINASE GENE [J].
BUSKIN, JN ;
HAUSCHKA, SD .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (06) :2627-2640
[9]  
CHAKRABORTY T, 1991, J BIOL CHEM, V266, P2878
[10]   GROWTH-FACTOR CONTROL OF SKELETAL-MUSCLE DIFFERENTIATION - COMMITMENT TO TERMINAL DIFFERENTIATION OCCURS IN G1 PHASE AND IS REPRESSED BY FIBROBLAST GROWTH-FACTOR [J].
CLEGG, CH ;
LINKHART, TA ;
OLWIN, BB ;
HAUSCHKA, SD .
JOURNAL OF CELL BIOLOGY, 1987, 105 (02) :949-956