IMPLEMENTATION ISSUES OF SIGMOID FUNCTION AND ITS DERIVATIVE FOR VLSI DIGITAL NEURAL NETWORKS

被引:16
作者
MURTAGH, P
TSOI, AC
机构
来源
IEE PROCEEDINGS-E COMPUTERS AND DIGITAL TECHNIQUES | 1992年 / 139卷 / 03期
关键词
NEURAL NETWORKS; SIGMOID FUNCTION;
D O I
10.1049/ip-e.1992.0033
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a number of different implementations for the first derivative of the sigmoid function. The implementation of the sigmoid function employs a powers-of-two piecewise linear approximation. The best implementation scheme for the derivative is suggested based on overall speed performance (circuit speed and training time) and hardware requirements.
引用
收藏
页码:207 / 214
页数:8
相关论文
共 18 条
[1]  
ALIPPI C, 1991, P IEEE INT S CIRC SY, P1505
[2]  
[Anonymous], 1991, INTRO THEORY NEURAL, DOI DOI 10.1201/9780429499661
[3]  
[Anonymous], 1989, ANALOG VLSI NEURAL S
[4]  
BAILEY J, 1988, P IEEE INT C NEURAL, V2, P173
[5]  
BERGMANN NW, 1990, UNPUB INT J PARA SEP
[6]  
DENYER P, 1985, VLSI SIGNAL PROCESSI
[7]  
DEPRETTERE E, 1984, P INT C ACOUST SPEEC
[8]  
KUNG SY, 1988, VLSI ARRAY PROCESSOR
[9]   2S COMPLEMENT PIPELINE MULTIPLIERS [J].
LYON, RF .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1976, 24 (04) :418-425
[10]  
McClelland J. L., 1988, EXPLORATIONS PARALLE, P121