SUPERCONDUCTING TL-PB-BA-SR-CA-CU-O(AG) THICK-FILMS (5-20 MU-M) PREPARED USING A COMMERCIAL SPRAY-PYROLYSIS SYSTEM AND 2-ZONE FURNACE ANNEALING

被引:9
作者
SCHULZ, DL [1 ]
PARILLA, PA [1 ]
GINLEY, DS [1 ]
VOIGT, JA [1 ]
ROTH, EP [1 ]
VENTURINI, EL [1 ]
机构
[1] SANDIA NATL LABS,ALBUQUERQUE,NM 87185
关键词
D O I
10.1109/77.402969
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A spray pyrolysis route to superconducting Pb-, Sr-, and Ag-substituted Tl-Ba-Ca-Cu-O thick films has been developed. First, a precursor powder with the stoichiometry Pb0.46Ba0.40Sr1.52Ca1.86Cu3.00Ox(Ag-0.37) (PBSCCO) was synthesized with the particle size of this powder being subsequently reduced to 4-6 mu m using a ball mill. Next, this powder was mixed with ethyl cellulose binder and sprayed with an airbrush using an N-2 carrier gas. Flexible polycrystalline Y2O3:ZrO2 (YSZ) as well as single-crystal MgO, SrTiO3, NdGaO3, and LaAlO3 substrates were mounted on a hot plate with typical growth temperatures of 80-100 degrees C. Growth times of similar to 10 min provided films which were 5-20 mu m in thickness. After an intermediate O-2 anneal to remove the organic binder, these films were subjected to a flowing 2-zone thallination process. Very well c-axis oriented Tl(0.70)Pb(0.36)Ba(0.39)Sr(1.58)Ca(1.98)Cu(3)0(x) (TP-1223) phase material was obtained for films grown on single-crystal LaAlO3. Films grown on all other substrates surveyed in the study gave rise to impurity phase formation and/or incomplete reaction. The PBSCCO and TP-1223 films were characterized by theta/2 theta and omega-rocking curve X-ray diffraction (XRD) analyses, scanning electron microscopy (SEM), variable temperature magnetic measurement, and inductively coupled plasma atomic emission spectroscopy (ICPAES).
引用
收藏
页码:1962 / 1965
页数:4
相关论文
共 16 条
[1]  
Kim D.H., Gray K.E., Kampwirth R.T., Smith J.C., Richeson D.S., Marks T.J., Kang J.H., Talvacchio J., Eddy M., 177, (1991)
[2]  
Tkaczyk J.E., DeLuca J.A., Karas P.L., Bednarczyk P.J., Garbauskas M.F., Arendt R.H., Lay K.W., Moodera J.S., Appl. Phys. Lett., 61, (1992)
[3]  
DeLuca J.A., Karas P.L., Tkaczyk J.E., Bednarczyk P.J., Garbauskas M.F., Briant C.L., Sorensen D.B., 205, (1993)
[4]  
Subramanian M.A., Torardi C.C., Gopalakrishnan J., Gai P.L., Calabrese J.C., Askew T.R., Flippen R.B., Sleight A.W., Science, 242, (1988)
[5]  
Kamo T., Doi T., Soeta A., Yuasa T., Inoue N., Aihara K., Matsuda S.-P., Appl. Phys. Lett., 59, (1991)
[6]  
Ren Z.F., Wang J.H., Appl. Phys. Lett., 61, (1992)
[7]  
Okada M., Tanaka K., Kamo T., Jpn. J. Appl. Phys., 32, (1993)
[8]  
Parilla P.A., Schulz D.L., Bhattacharya R., Blaugher R.D., Ginley D.S., Voigt J.A., Roth E.P., Venturini E.L., IEEE Trans. Appl.
[9]  
Schulz D.L., Parilla P.A., Ginley D.S., Voigt J.A., Roth E.P., Appl. Phys. Lett.
[10]  
Voigt J.A., Bunker B.C., Hammetter W.F., Ginley D.S., Venturini E.L., Kwak J.F., Lamppa D.L., High-Temperature Superconducting Compounds: Processing and Related Properties, (1991)