IS ONSAGER SYMMETRY RELEVANT IN THE TRANSPORT-EQUATIONS FOR MAGNETICALLY CONFINED PLASMAS

被引:33
作者
BALESCU, R
机构
[1] Physique Statistique et Plasmas, Association Euratom - Etat Belge Pour la Fusion, Université Libre de Bruxelles, 1050 Bruxelles, CP 231, Campus Plaine
来源
PHYSICS OF FLUIDS B-PLASMA PHYSICS | 1991年 / 3卷 / 03期
关键词
D O I
10.1063/1.859855
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A global, algebraic view of the transport processes in a magnetically confined plasma is developed. Both the neoclassical (banana) and the anomalous transport matrices are represented in a factorized form, thus separating the roles of the dynamics and of the geometric constraints. The self-adjointness of the collision operator (the sole condition for classical Onsager symmetry) is shown to be a necessary, but not sufficient condition for this symmetry in confined plasmas. The latter results for the banana transport matrix from a delicate relationship between dynamic and geometric components. This structure is not present in the anomalous transport matrix, and the Onsager symmetry is broken in this case. It is stressed that the symmetry breaking does not violate any general principles.
引用
收藏
页码:564 / 579
页数:16
相关论文
共 44 条