The time-varying gap and coprime factor perturbations

被引:9
作者
Feintuch, A
机构
[1] Department of Mathematics and Computer Science, Ben-Gurion University of the Negev, Beersheva
关键词
gap metric; time-varying systems; robust control;
D O I
10.1007/BF01209690
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The connection between the time-varying gap metric and two-block problems is utilized to obtain criteria for robust stabilization of linear, discrete-time, time-varying systems. In particular we give a formula for the optimal minimal angle for a stabilizable linear time-varying system and show that it has a maximally stabilizing controller.
引用
收藏
页码:352 / 374
页数:23
相关论文
共 21 条
[1]  
[Anonymous], 1972, APPROXIMATE SOLUTION
[2]   STABILIZABILITY AND EXISTENCE OF SYSTEM REPRESENTATIONS FOR DISCRETE-TIME TIME-VARYING SYSTEMS [J].
DALE, WN ;
SMITH, MC .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (06) :1538-1557
[3]  
Davidson K. R., 1988, PITMAN RES NOTES MAT, V191
[4]   THE GAP METRIC - ROBUSTNESS OF STABILIZATION OF FEEDBACK-SYSTEMS [J].
ELSAKKARY, AK .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1985, 30 (03) :240-247
[5]   THE GAP METRIC FOR TIME-VARYING SYSTEMS [J].
FEINTUCH, A .
SYSTEMS & CONTROL LETTERS, 1991, 16 (04) :277-279
[6]   UNIFORMLY OPTIMAL-CONTROL OF LINEAR TIME-VARYING SYSTEMS [J].
FEINTUCH, A ;
FRANCIS, BA .
SYSTEMS & CONTROL LETTERS, 1984, 5 (01) :67-71
[7]   ROBUSTNESS FOR TIME-VARYING SYSTEMS [J].
FEINTUCH, A .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1993, 6 (03) :247-263
[8]   GRAPHS OF TIME-VARYING LINEAR-SYSTEMS AND COPRIME FACTORIZATIONS [J].
FEINTUCH, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 163 (01) :79-85
[9]  
FEINTUCH A, 1994, LINEAR ALGEBRA APPL, V208, P209
[10]  
FEINTUCH A, 1982, SYSTEM THEORY HILBER