A CHARACTERIZATION OF RANDOM-VARIABLES WITH MINIMUM L2-DISTANCE

被引:98
作者
RUSCHENDORF, L [1 ]
RACHEV, ST [1 ]
机构
[1] UNIV CALIF SANTA BARBARA,SANTA BARBARA,CA 93106
关键词
L[!sup]2[!/sup] Wassertein-distance; marginals; optimal couplings; subgradients;
D O I
10.1016/0047-259X(90)90070-X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A complete characterization of multivariate random variables with minimum L2 Wasserstein-distance is proved by means of duality theory and convex analysis. This characterization allows to determine explicitly the optimal couplings for several multivariate distributions. A partial solution of this problem has been found in recent papers by Knott and Smith. © 1990.
引用
收藏
页码:48 / 54
页数:7
相关论文
共 13 条
[1]   THE FRECHET DISTANCE BETWEEN MULTIVARIATE NORMAL-DISTRIBUTIONS [J].
DOWSON, DC ;
LANDAU, BV .
JOURNAL OF MULTIVARIATE ANALYSIS, 1982, 12 (03) :450-455
[2]  
FRECHET M, 1957, CR HEBD ACAD SCI, V244, P689
[3]  
GELBRICH M, 1988, FORMULA L2 WASSERSTE
[4]  
GIVENS CR, 1984, MICH MATH J, P231
[5]  
Hoeffding W., 1940, SCHR MATH I U BERLIN, V5, P181
[6]  
IOFFE A, 1979, THEORIE EXTREMALAUFG
[7]   DUALITY THEOREMS FOR MARGINAL PROBLEMS [J].
KELLERER, HG .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1984, 67 (04) :399-432
[8]  
KNOTT M, 1985, J OPTIM THEORY APPL, V43, P39
[9]   THE DISTANCE BETWEEN 2 RANDOM VECTORS WITH GIVEN DISPERSION MATRICES [J].
OLKIN, I ;
PUKELSHEIM, F .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1982, 48 (DEC) :257-263