THE INTERPOLATION THEOREM FOR NARROW QUADRILATERAL ISOPARAMETRIC FINITE-ELEMENTS

被引:39
作者
ZENISEK, A [1 ]
VANMAELE, M [1 ]
机构
[1] UNIV OXFORD,COMP LAB,NUMER ANAL GRP,OXFORD OX1 3QD,ENGLAND
关键词
Mathematics Subject Classification (1991):65N30;
D O I
10.1007/s002110050163
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The interpolation theorem for convex quadrilateral isoparametric finite elements is proved in the case when the condition rho(K)/h(K) greater than or equal to rho(0) > 0 is not satisfied, where h(K) is the diameter of the element K and rho(K) is the radius of an inscribed circle in K. The interpolation error is O(h(K)(2)) in the L(2)(K)-norm and O(h(K)) in the H-1(K)-norm provided that the interpolated function belongs to H-2(K). In the case when the long sides of the quadrilateral K are parallel the constants appearing in the estimates are evaluated.
引用
收藏
页码:123 / 141
页数:19
相关论文
共 10 条
[1]   ANISOTROPIC INTERPOLATION WITH APPLICATIONS TO THE FINITE-ELEMENT METHOD [J].
APEL, T ;
DOBROWOLSKI, M .
COMPUTING, 1992, 47 (3-4) :277-293
[2]   ANGLE CONDITION IN FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
AZIZ, AK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (02) :214-226
[3]  
Ciarlet P. G., 1972, Computer Methods in Applied Mechanics and Engineering, V1, P217, DOI 10.1016/0045-7825(72)90006-0
[4]  
JAMET P, 1976, REV FR AUTOMAT INFOR, V10, P43
[5]  
JAMET P, 1974, CRM447 CTR ET LIM RE
[6]  
Kizek M., 1991, APPL MATH PRAHA, V36, P223
[7]  
Kufner A., 1977, FUNCTION SPACES
[8]  
Necas J., 1967, METHODES DIRECTES TH
[9]  
Synge JL, 1957, HYPERCIRCLE MATH PHY
[10]  
ZENISEK A, 1990, NONLINEAR ELLIPTIC E