THE TRACE TO THE BOUNDARY OF SOBOLEV SPACES ON A SNOWFLAKE

被引:56
作者
WALLIN, H
机构
[1] Department of Mathematics, University of Ume, Ume
关键词
D O I
10.1007/BF02567633
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The trace to the boundary is defined for functions in a Sobolev space in a domain with fractal boundary, for instance von Koch's snowflake domain. The image and the kernel of the trace operator are characterized.
引用
收藏
页码:117 / 125
页数:9
相关论文
共 10 条
[1]  
Falconer, 1985, GEOMETRY FRACTAL SET
[2]   QUASI-CONFORMAL MAPPINGS AND EXTENDABILITY OF FUNCTIONS IN SOBOLEV SPACES [J].
JONES, PW .
ACTA MATHEMATICA, 1981, 147 (1-2) :71-88
[3]  
JONSSON A, 1988, LECT NOTES MATH, V1302, P303
[4]  
Jonsson A., 1984, MATH REPORTS 1
[5]  
JONSSON A, 1988, IN PRESS MANUSCRIPTA
[6]   THE TRACE OF SOBOLEV-SLOBODECKIJ SPACES ON LIPSCHITZ-DOMAINS [J].
MARSCHALL, J .
MANUSCRIPTA MATHEMATICA, 1987, 58 (1-2) :47-65
[7]   CONTINUITY PROPERTIES OF POTENTIALS [J].
MEYERS, NG .
DUKE MATHEMATICAL JOURNAL, 1975, 42 (01) :157-166
[8]  
Stein E. M., 1970, SINGULAR INTEGRAL DI
[9]  
Wallin, 1978, ANN I FOURIER GRENOB, V28, P139, DOI DOI 10.5802/AIF.684
[10]  
WALLIN H, 1989, TRACE BOUNDARY SOBOL