ON DIMENSION AND EXISTENCE OF LOCAL BASES FOR MULTIVARIATE SPLINE SPACES

被引:25
作者
ALFELD, P [1 ]
SCHUMAKER, LL [1 ]
SIRVENT, M [1 ]
机构
[1] VANDERBILT UNIV,DEPT MATH,NASHVILLE,TN 37235
关键词
D O I
10.1016/0021-9045(92)90087-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider spaces of splines in k variables of smoothness r and degree d defined on a polytope in Rk which has been divided into simplices. Bernstein-Bézier methods are used to develop a framework for analyzing dimension and basis questions. Dimension formulae and local bases are found for the case r = 0 and general k. The main result of the paper shows the existence of local bases for spaces of trivariate splines (where k = 3) whenever d > 8r. © 1992.
引用
收藏
页码:243 / 264
页数:22
相关论文
共 19 条
[1]  
Alfeld P., 1987, Computer-Aided Geometric Design, V4, P105, DOI 10.1016/0167-8396(87)90028-8
[2]   AN EXPLICIT BASIS FOR C1 QUARTIC BIVARIATE SPLINES [J].
ALFELD, P ;
PIPER, B ;
SCHUMAKER, LL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :891-911
[3]   THE DIMENSION OF BIVARIATE SPLINE SPACES OF SMOOTHNESS R FOR DEGREE D GREATER-THAN-OR-EQUAL-TO 4R+1 [J].
ALFELD, P ;
SCHUMAKER, LL .
CONSTRUCTIVE APPROXIMATION, 1987, 3 (02) :189-197
[4]  
Alfeld P., 1984, Computer-Aided Geometric Design, V1, P169, DOI 10.1016/0167-8396(84)90029-3
[5]  
ALFELD P, 1989, MATH METHODS COMPUTE, P1
[6]  
Alfeld P, 1986, NUMERICAL ANAL, P1
[7]  
ALFELD P, 1989, MULTIVARIATE APPROXI, V4, P1
[8]  
de Boor C, 1987, GEOMETRIC MODELING A, P131
[9]  
Hong D., 1991, APPROX THEORY APPL, V7, P56
[10]  
Lawson C. L., 1986, Computer-Aided Geometric Design, V3, P231, DOI 10.1016/0167-8396(86)90001-4