MUSCARINIC CHOLINERGIC RECEPTOR SUBTYPES IN HUMAN DETRUSOR MUSCLE STUDIED BY LABELED AND NONLABELED PIRENZEPINE, AFDX-116 AND 4DAMP

被引:26
作者
KONDO, S
MORITA, T
TASHIMA, Y
机构
[1] Second Department of Biochemistry, Akita University School of Medicine, Akita
[2] Department of Urology, Tokyo Medical and Dental University School of Medicine, Tokyo
关键词
HUMAN DETRUSOR MUSCLE; MUSCARINIC RECEPTOR SUBTYPE; 3H-PIRENZEPINE; 3H-AFDX-116; 3H-4DAMP;
D O I
10.1159/000282710
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
The densities of M1, M2 and M3 muscarinic receptors in human detrusor muscle were measured using H-3-pirenzepine (H-3-PZP), H-3-AFDX-116 (H-3-AFDX) and H-3-4-diphenyl-acetoxy-N-methyl-piperidine methidide (H-3-4DAMP). The affinities of PZP, AFDX and 4DAMP for human detrusor were determined in inhibition experiments with H-3-quinuclidinyl benzilate (H-3-QNB). Saturation experiments with H-3-PZP, H-3-AFDX and H-3-4DAMP revealed the presence of M1, M2 and M3 receptors in human detrusor. The K-D values (nM) and the B-max values (fmol/mg protein) (mean +/- SD, n = 6) were 0.84 +/- 0.15 and 13.04 +/- 1.54 for H-3-PZP, 0.68 +/- 0.21 and 9.30 +/- 1.10 for H-3-AFDX, and 0.25 +/- 0.13 and 102.1 +/- 7.40 for H-3-4DAMP. These data indicate that the bladder muscarinic receptors consist mainly of the M3 subtype. Nonlabeled PZP, AFDX and 4DAMP inhibited the H-3-QNB binding to human detrusor with Ki values (nM) (mean +/- SD, n = 6) of 243 +/- 62.5, 59.7 +/- 15.3, 2.69 +/- 0.96, respectively. Human detrusor was found to have a high affinity for 4DAMP. These data suggest that M3 muscarinic receptors are biochemically predominant in human detrusor muscle.
引用
收藏
页码:150 / 153
页数:4
相关论文
共 13 条
[1]  
Levin R.M., Staskin D.R., Wcin A.J., The muscarinic cholinergic binding kinetics of the human urinary bladder, Neurourol Urodvn, 1, pp. 221-225, (1982)
[2]  
Birdsall N.J.M., Hulmc E.C., Muscarinic receptor subclasses, Trends Pharmacol Sci, 4, pp. 459-463, (1983)
[3]  
Brichant J.F., Warner D.O., Gunst S.J., Rchder K., Muscarinic receptor subtypes in canine trachea, Am J Physiol, 258, pp. L349-L354, (1990)
[4]  
Eglen R.M., Whiting R.L., Heterogeneity of vascular muscarinic receptors, J Auton Pharmacol, 19, pp. 223-245, (1990)
[5]  
Rosenthal H.E., Graphic method for the determination and presentation of parameters in a complex system, Anal Biochem, 20, pp. 525-532, (1967)
[6]  
Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J., Protein measurement with Folin phenol reagent, J Biol Chem, 193, pp. 265-275, (1951)
[7]  
Cheng Y.C., Prusoff W.H., Relationship between the inhibition constant (K) and the concentration of inhibitor which causes 50% inhibition (IC<sub>50</sub>) of an enzyme reaction, Biochem Pharmacol, 22, pp. 3099-3108, (1973)
[8]  
Michel A.D., Stcinfach E., Whiting R.L., Direct labeling of rat M3-muscarinic receptors by [<sup>3</sup>H]4DAMP, Eur J Pharmacol, 166, pp. 459-466, (1989)
[9]  
Michel A.D., Whiting R.L., Methoctramine reveals heterogeneity of M2 muscarinic receptors in longitudinal ileal smooth muscle membranes, Eur J Pharmacol, 145, pp. 305-311, (1988)
[10]  
Batink H.D., Davidesko D., Doods H.N., Van Charldorp K.J., De Jonge A., Van Zwieten P.A., Subdivision of M2 receptors into 3 subtypes, BrJ Pharmacol, 90, (1987)