LINE RELAXATION FOR SPECTRAL MULTIGRID METHODS

被引:35
作者
HEINRICHS, W
机构
关键词
D O I
10.1016/0021-9991(88)90161-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
引用
收藏
页码:166 / 182
页数:17
相关论文
共 18 条
[1]   IMPROVED SPECTRAL MULTIGRID METHODS FOR PERIODIC ELLIPTIC PROBLEMS [J].
BRANDT, A ;
FULTON, SR ;
TAYLOR, GD .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 58 (01) :96-112
[2]  
BRANDT A, 1982, 1981 P C KOLN PORZ
[3]   PRECONDITIONED MINIMAL RESIDUAL METHODS FOR TSCHEBYSCHEFF SPECTRAL CALCULATIONS [J].
CANUTO, C ;
QUARTERONI, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 60 (02) :315-337
[4]  
FADDEJEW DK, 1979, NUMERISCHE METHODEN
[5]  
GOTTLIEB D, 1977, NSF CBMS MONOGRAPH, V26
[6]   ACCURATE SOLUTION OF POISSONS EQUATION BY EXPANSION IN TSCHEBYSCHEFF POLYNOMIALS [J].
HAIDVOGEL, DB ;
ZANG, T .
JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 30 (02) :167-180
[7]   TSCHEBYSCHEV 3-D SPECTRAL AND 2-D PSEUDOSPECTRAL SOLVERS FOR THE HELMHOLTZ-EQUATION [J].
HALDENWANG, P ;
LABROSSE, G ;
ABBOUDI, S ;
DEVILLE, M .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 55 (01) :115-128
[8]  
HEINRICHS W, 1986, THESIS U DUSSELDORF
[9]  
HEMKER PW, 1980, BOUNDARY INTERIOR LA
[10]  
LANCZOS C, 1956, APPLIED ANAL