ON RINGS WITH ENGEL CYCLES

被引:5
作者
BELL, HE
KLEIN, AA
机构
[1] BROCK UNIV,DEPT MATH,ST CATHARINES L2S 3A1,ONTARIO,CANADA
[2] TEL AVIV UNIV,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,SCH MATH SCI,IL-69978 TEL AVIV,ISRAEL
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 1991年 / 34卷 / 03期
关键词
D O I
10.4153/CMB-1991-048-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A ring R is called an EC-ring if for each x, y is a member of R, there exist distinct positive integers m, n such that the extended commutators [x, y]m and [x, y]n are equal. We show that in certain EC-rings, the commutator ideal is periodic; we establish commutativity of arbitrary EC-domains; we prove that a ring R is commutative if for each x, y is a member of R, there exists n > 1 for which [x, y] = [x, y]n.
引用
收藏
页码:295 / 300
页数:6
相关论文
共 9 条
[1]   ON COMMUTATIVITY OF PERIODIC RINGS AND NEAR-RINGS [J].
BELL, HE .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1980, 36 (3-4) :293-302
[2]   RINGS IN WHICH DERIVATIONS SATISFY CERTAIN ALGEBRAIC CONDITIONS [J].
BELL, HE ;
KAPPE, LC .
ACTA MATHEMATICA HUNGARICA, 1989, 53 (3-4) :339-346
[3]   SOME COMMUTATIVITY RESULTS FOR PERIODIC RINGS [J].
BELL, HE .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1976, 28 (3-4) :279-283
[4]   THE ALGEBRAIC HYPERCENTER AND SOME APPLICATIONS [J].
BERGEN, J ;
HERSTEIN, IN .
JOURNAL OF ALGEBRA, 1983, 85 (01) :217-242
[5]   INFINITE SOLUBLE GROUPS WITH ENGEL CYCLES - A FINITENESS CONDITION [J].
BRANDL, R .
MATHEMATISCHE ZEITSCHRIFT, 1983, 182 (02) :259-264
[6]   ON A THEOREM OF HERSTEIN [J].
CHACRON, M .
CANADIAN JOURNAL OF MATHEMATICS, 1969, 21 (06) :1348-&
[7]  
Herstein I. N., 1963, MICHIGAN MATH J, V10, P269, DOI 10.1307/mmj/1028998910
[8]  
HERSTEIN IN, 1962, ATTI ACCAD NAZ SFMN, V32, P177
[9]  
STREB W, 1981, RED SEM MAT U PADOVA, V64, P159