POSITRON EMISSION TOMOGRAPHY WITHIN A MAGNETIC-FIELD USING PHOTOMULTIPLIER TUBES AND LIGHTGUIDES

被引:53
作者
CHRISTENSEN, NL
HAMMER, BE
HEIL, BG
FETTERLY, K
机构
[1] UNIV MINNESOTA,DEPT RADIOL,MINNEAPOLIS,MN 55455
[2] UNIV MINNESOTA,SCH PHYS & ASTRON,MINNEAPOLIS,MN 55455
关键词
D O I
10.1088/0031-9155/40/4/014
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The spatial resolution of positron emission tomography (PET) improves when positron annihilation takes place in a strong magnetic field. In a magnetic field, the Lorentz force restricts positron range perpendicular to the field. Since positron annihilation occurs closer to its point of origin, the positron annihilation point spread function decreases. This was verified experimentally by measuring the spread function of positron annihilation from a 500 mm Ge-68 bead imbedded in tissue-equivalent wax. At 5 T the spread function full width at half maximum (FWHM) and the full width at tenth maximum (FWTM) decrease by a factor of 1.42 and 2.09, respectively. Two Nar(TI) scintillation crystals that interface to a pair of photomultiplier tubes (PMTS) through long lightguides detect positron annihilation at zero field and 5.0 T. Photomultiplier tubes, inoperable in strong magnetic fields, are functional if lightguides bring the photons produced by scintillators within the field to a minimal magnetic field. These tests also demonstrate techniques necessary for combining magnetic resonance imaging (MRI) and PET into one scanner.
引用
收藏
页码:691 / 697
页数:7
相关论文
共 11 条
  • [1] FUNCTIONAL MAPPING OF THE HUMAN VISUAL-CORTEX BY MAGNETIC-RESONANCE-IMAGING
    BELLIVEAU, JW
    KENNEDY, DN
    MCKINSTRY, RC
    BUCHBINDER, BR
    WEISSKOFF, RM
    COHEN, MS
    VEVEA, JM
    BRADY, TJ
    ROSEN, BR
    [J]. SCIENCE, 1991, 254 (5032) : 716 - 719
  • [2] Budinger T F, 1991, Acta Radiol Suppl, V376, P15
  • [3] ON THE ANGULAR DISTRIBUTION OF 2-PHOTON ANNIHILATION RADIATION
    DEBENEDETTI, S
    COWAN, CE
    KONNEKER, WR
    PRIMAKOFF, H
    [J]. PHYSICAL REVIEW, 1950, 77 (02): : 205 - 212
  • [4] A POSITRON TOMOGRAPH WITH 600-BGO CRYSTALS AND 2.6 MM RESOLUTION
    DERENZO, SE
    HUESMAN, RH
    CAHOON, JL
    GEYER, AB
    MOSES, WW
    UBER, DC
    VULETICH, T
    BUDINGER, TF
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1988, 35 (01) : 659 - 664
  • [5] Evans R. D., 1955, ATOMIC NUCL, P711
  • [6] USE OF A MAGNETIC-FIELD TO INCREASE THE SPATIAL-RESOLUTION POSITRON EMISSION TOMOGRAPHY
    HAMMER, BE
    CHRISTENSEN, NL
    HEIL, BG
    [J]. MEDICAL PHYSICS, 1994, 21 (12) : 1917 - 1920
  • [7] HAMMER BE, 1990, Patent No. 4939464
  • [8] A SIMULATION STUDY OF A METHOD TO REDUCE POSITRON-ANNIHILATION SPREAD DISTRIBUTIONS USING A STRONG MAGNETIC-FIELD IN POSITRON EMISSION TOMOGRAPHY
    IIDA, H
    KANNO, I
    MIURA, S
    MURAKAMI, M
    TAKAHASHI, K
    UEMURA, K
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1986, 33 (01) : 597 - 600
  • [9] FUNCTIONAL BRAIN MAPPING BY BLOOD OXYGENATION LEVEL-DEPENDENT CONTRAST MAGNETIC-RESONANCE-IMAGING - A COMPARISON OF SIGNAL CHARACTERISTICS WITH A BIOPHYSICAL MODEL
    OGAWA, S
    MENON, RS
    TANK, DW
    KIM, SG
    MERKLE, H
    ELLERMANN, JM
    UGURBIL, K
    [J]. BIOPHYSICAL JOURNAL, 1993, 64 (03) : 803 - 812
  • [10] WOJIK R, 1993, EMBEDDED WAVESHIFTIN, P617