HOMOCLINIC, HETEROCLINIC, AND PERIODIC-ORBITS FOR A CLASS OF INDEFINITE HAMILTONIAN-SYSTEMS

被引:32
作者
HOFER, H
TOLAND, J
机构
关键词
D O I
10.1007/BF01457066
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:387 / 403
页数:17
相关论文
共 9 条
[1]   ON THE NUMBER OF PERIODIC TRAJECTORIES FOR A HAMILTONIAN FLOW ON A CONVEX ENERGY SURFACE [J].
EKELAND, I ;
LASRY, JM .
ANNALS OF MATHEMATICS, 1980, 112 (02) :283-319
[2]   PERIODIC-SOLUTIONS OF HAMILTONIAN SYSTEMS [J].
RABINOWITZ, PH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1978, 31 (02) :157-184
[3]   PERIODIC-SOLUTIONS OF A HAMILTONIAN SYSTEM ON A PRESCRIBED ENERGY SURFACE [J].
RABINOWITZ, PH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1979, 33 (03) :336-352
[4]  
Seifert H., 1949, MATH Z, V51, P197
[6]  
TOLAND JF, 1981, MATH P CAMB PHIL SOC, V90, P353
[7]  
TOLAND JF, 1983, P AMS SUMMER SCH BER
[8]   PERIODIC ORBITS FOR CONVEX HAMILTONIAN SYSTEMS [J].
WEINSTEIN, A .
ANNALS OF MATHEMATICS, 1978, 108 (03) :507-518
[9]   HYPOTHESES OF RABINOWITZ PERIODIC ORBIT THEOREMS [J].
WEINSTEIN, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1979, 33 (03) :353-358