A NOTE ON A POTENTIAL REDUCTION ALGORITHM FOR LP WITH SIMULTANEOUS PRIMAL DUAL UPDATING

被引:2
作者
HUANG, S
KORTANEK, KO
机构
[1] Department of Management Sciences, The University of Iowa, Iowa City
关键词
LINEAR PROGRAMMING; POTENTIAL REDUCTION ALGORITHM; PRIMAL DUAL STEPS;
D O I
10.1016/0167-6377(91)90068-Z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Potential function reduction algorithms for linear programming and the linear complementarity problem use key projections p(x) and p(s) which are derived from the 'double' potential function, phi(x, s) = rho ln(x(T)s)-SIGMA(j = 1)n ln(x(j)s(j)), where x and s are primal and dual slacks vectors. For non-symmetric LP duality we show that the existence of sBAR, yBAR, xBAR satisfying sBAR = c - A(T)yBAR, AxBAR = b such that p(x) = (rho/x(T)s)XsBAR - e and p(s) = (rho/x(T)s)SxBAR - e yields simultaneous primal and dual projection-based updating during the process of reducing the potential function phi. The role of xBAR, sBAR in an O(square-root n L) simultaneous primal-dual update algorithm is discussed.
引用
收藏
页码:501 / 507
页数:7
相关论文
共 15 条
[1]  
ANSTREICHER KM, 1988, LONG STEPS O N3L ALG
[2]  
FREUND RM, 1988, OR182188 MIT SLOAN S
[3]  
GONZAGA CC, 1989, SORIE862 CORN U TECH
[4]   A NEW POLYNOMIAL-TIME ALGORITHM FOR LINEAR-PROGRAMMING [J].
KARMARKAR, N .
COMBINATORICA, 1984, 4 (04) :373-395
[5]   AN O(SQUARE-ROOT-N L) ITERATION POTENTIAL REDUCTION ALGORITHM FOR LINEAR COMPLEMENTARITY-PROBLEMS [J].
KOJIMA, M ;
MIZUNO, S ;
YOSHISE, A .
MATHEMATICAL PROGRAMMING, 1991, 50 (03) :331-342
[6]  
KOJIMA M, HOMOTOPY CONTINUATIO
[7]  
KOJIMA M, 1988, INTERIOR POINT POTEN
[8]  
Kojima M., 1989, PROGR MATH PROGRAMMI, P29
[9]  
KORTANEK KO, 1989, 892 U IOW DEP MAN SC
[10]  
MEGIDDO N, 1986, 6TH P MATH PROGR S J, P1