THE ORIGIN OF FORBIDDEN LINE EMISSION FROM YOUNG STELLAR OBJECTS

被引:36
作者
DECASTRO, AIG
PUDRITZ, RE
机构
[1] MCMASTER UNIV,DEPT PHYS & ASTRON,HAMILTON L8S 4M1,ONTARIO,CANADA
[2] UNIV TORONTO,CITA,TORONTO M5S 1A1,ONTARIO,CANADA
关键词
ACCRETION; ACCRETION DISKS; SHOCK WAVES; STARS; EMISSION-LINE; BE; MASS LOSS; PRE-MAIN-SEQUENCE;
D O I
10.1086/172704
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a model for the origin of blueshifted, optical forbidden line emission and jets in young stellar objects based on generic properties of hydromagnetic disk winds. Magnetic stresses recollimate hydromagnetic disk winds to magnetic focal regions under very general conditions. We demonstrate that conditions in MHD shocks at these points account for the observed emission. We find that for fiducial accretion rates of 10(-7) M. yr-1 and magnetic fields at the inner edge of the disk (congruent-to 10(12) cm, gas accelerated from the innermost parts of a Keplerian accretion disk focuses into regions greater-than-or-equal-to 0.4 AU in radius that lie congruent-to 16 AU above and below the disk. The shocked gas density ranges from congruent-to 10(4) to 10(8) cm-3 where the latter occurs in the innermost part of the flow and shock. Shocked gas speeds range up to 250 km s-1 (going from the outer part of the shock at congruent-to 2 AU, to the innermost region) under these conditions. The magnetic field is moderately amplified in the shock and diverges from the flow axis in the postshock flow. It is this feature of MHD shock that produces an expanding cone of shocked gas. The opening angle of the postshock gas with respect to the flow axis is 40-degrees, and this accounts for the double-peaked character of the line profiles. Our model also predicts that the slower velocity component is associated with shocked gas of lower density than that associated with the higher velocity component. We show that the wind is largely neutral with an electron fraction of 10(-1). The wind remains largely neutral in adiabatic MHD shocks because much of the preshock kinetic energy goes into an increased postshock magnetic field. Substantial fractions of the flow energy can be liberated in these shocks.
引用
收藏
页码:748 / 761
页数:14
相关论文
共 49 条
[1]   MAGNETIC FOCUSING IN THE SCO-X-1 RADIO-SOURCE [J].
ACHTERBERG, A ;
BLANDFORD, RD ;
GOLDREICH, P .
NATURE, 1983, 304 (5927) :607-609
[2]   SPECTRAL EVOLUTION OF YOUNG STELLAR OBJECTS [J].
ADAMS, FC ;
LADA, CJ ;
SHU, FH .
ASTROPHYSICAL JOURNAL, 1987, 312 (02) :788-806
[3]  
ALDROVANDI SM, 1973, ASTRON ASTROPHYS, V25, P137
[4]  
ALLER LH, 1984, PHYSICS THERMAL GASE, P324
[5]  
APPENZELLER I, 1989, ARA A, V3, P56
[6]   ACCRETION DISKS AROUND T-TAURI STARS [J].
BERTOUT, C ;
BASRI, G ;
BOUVIER, J .
ASTROPHYSICAL JOURNAL, 1988, 330 (01) :350-373
[7]   HYDROMAGNETIC FLOWS FROM ACCRETION DISKS AND THE PRODUCTION OF RADIO JETS [J].
BLANDFORD, RD ;
PAYNE, DG .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1982, 199 (03) :883-903
[8]   FORBIDDEN-LINE EMISSION AND INFRARED EXCESSES IN T-TAURI STARS - EVIDENCE FOR ACCRETION-DRIVEN MASS-LOSS [J].
CABRIT, S ;
EDWARDS, S ;
STROM, SE ;
STROM, KM .
ASTROPHYSICAL JOURNAL, 1990, 354 (02) :687-700
[9]   MASS-LOSS FROM PREMAIN-SEQUENCE ACCRETION DISKS .1. THE ACCELERATING WIND OF FU ORIONIS [J].
CALVET, N ;
HARTMANN, L ;
KENYON, SJ .
ASTROPHYSICAL JOURNAL, 1993, 402 (02) :623-634
[10]   OBSERVATIONAL STUDIES OF PRE-MAIN-SEQUENCE EVOLUTION [J].
COHEN, M ;
KUHI, LV .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 1979, 41 (04) :743-843