A NEW SCHEME FOR INCREMENTAL LEARNING

被引:12
作者
JUTTEN, C [1 ]
CHENTOUF, R [1 ]
机构
[1] INST NATL POLYTECH GRENOBLE,TRAITEMENT IMAGES & RECONNAISSANCE FORMES LAB,F-38031 GRENOBLE,FRANCE
关键词
D O I
10.1007/BF02312374
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new incremental procedure for supervised learning with noisy data. Each step consists in adding to the current network a new unit which is trained to learn the error of the network. The incremental step is repeated until the error of the current network can be considered as a noise. The stopping criterion is very simple and can be directly deduced from a statistical test on the estimated parameters of the new unit. First experimental results point out the efficacy of this new incremental scheme. Current works deal with theoretical analysis and practical refinements of the algorithm.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 11 条
[1]  
ALPAYDIN E, 1990, P INT NEUR NETW C PA, V2, P761
[2]  
AMENIYA T, 1986, ADV ECONOMETRICS
[3]  
COTTRELL M, IN PRESS IEEE T NEUR
[4]  
COTTRELL M, 1993, 1 EUR S ART NEUR NET, P157
[5]  
FAMBON O, 1994, 2ND EUR S ART NEUR N, P147
[6]  
Frean M., 1990, NEURAL COMPUT, V2, P198
[7]  
LeCun Y, 1990, ADV NEURAL INFORM PR, P598
[8]  
LOUIS C, 1994, NEURAL NETWORKS THEI
[9]   LEARNING IN FEEDFORWARD LAYERED NETWORKS - THE TILING ALGORITHM [J].
MEZARD, M ;
NADAL, JP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (12) :2191-2203
[10]  
REED R, IEEE T NEURAL NETWOR, V4, P740