Intra-field variability of scalar flux densities across a transition between a desert and an irrigated potato field

被引:31
作者
Baldocchi, DD
Rao, KS
机构
[1] Atmospheric Turbulence and Diffusion Division, NOAA/ARL, Oak Ridge, 37831, TN
关键词
D O I
10.1007/BF00710893
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This paper reports on measurements of sensible and latent heat and CO2 fluxes made over an irrigated potato field, growing next to a patch of desert. The study was conducted using two eddy correlation systems. One measurement system was located within the equilibrium boundary layer 800 m downwind from the edge of the potato field. The other measurement system was mobile and was placed at various downwind positions to probe the horizontal transition of vertical scalar fluxes. Latent (LE) and sensible (H) heat fluxes, measured at 4 m above the surface, exhibited marked variations with downwind distance over the field. Only after the fetch to height ratio exceeded 75 to 1 did LE and H become invariant with downwind distance. When latent and sensible heat fluxes were measured upwind of this threshold, significant advection of humidity-deficit occurred, causing a vertical flux divergence of H and LE. The measured fluxes of momentum, heat, and moisture were compared with predictions from a second-order closure two-dimensional atmospheric boundary layer model. There is good agreement between measurements and model predictions. A soil-plant atmosphere model was used to examine nonlinear feedbacks between humidity-deficits, stomatal conductance and evaporation. Data interpretation with this model revealed that the advection of hot dry air did not enhance surface evaporation rates near the upwind edge of the potato field, because of negative feedbacks among stomatal conductance, humidity-deficits, and LE. This finding is consistent with results from several recent studies.
引用
收藏
页码:109 / 136
页数:28
相关论文
共 57 条
[1]   AN OPEN PATH, FAST RESPONSE INFRARED-ABSORPTION GAS ANALYZER FOR H2O AND CO2 [J].
AUBLE, DL ;
MEYERS, TP .
BOUNDARY-LAYER METEOROLOGY, 1992, 59 (03) :243-256
[2]   CONCEPTUAL ASPECTS OF A STATISTICAL-DYNAMIC APPROACH TO REPRESENT LANDSCAPE SUBGRID-SCALE HETEROGENEITIES IN ATMOSPHERIC MODELS [J].
AVISSAR, R .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1992, 97 (D3) :2729-2742
[3]   A LAGRANGIAN RANDOM-WALK MODEL FOR SIMULATING WATER-VAPOR, CO-2 AND SENSIBLE HEAT-FLUX DENSITIES AND SCALAR PROFILES OVER AND WITHIN A SOYBEAN CANOPY [J].
BALDOCCHI, D .
BOUNDARY-LAYER METEOROLOGY, 1992, 61 (1-2) :113-144
[4]   A COMPARATIVE-STUDY OF MASS AND ENERGY-EXCHANGE RATES OVER A CLOSED C-3 (WHEAT) AND AN OPEN C-4 (CORN) CROP .2. CO2 EXCHANGE AND WATER-USE EFFICIENCY [J].
BALDOCCHI, D .
AGRICULTURAL AND FOREST METEOROLOGY, 1994, 67 (3-4) :291-321
[5]   A COMPARATIVE-STUDY OF MASS AND ENERGY-EXCHANGE OVER A CLOSED C-3 (WHEAT) AND AN OPEN C-4 (CORN) CANOPY .1. THE PARTITIONING OF AVAILABLE ENERGY INTO LATENT AND SENSIBLE HEAT-EXCHANGE [J].
BALDOCCHI, D .
AGRICULTURAL AND FOREST METEOROLOGY, 1994, 67 (3-4) :191-220
[6]   MEASURING BIOSPHERE-ATMOSPHERE EXCHANGES OF BIOLOGICALLY RELATED GASES WITH MICROMETEOROLOGICAL METHODS [J].
BALDOCCHI, DD ;
HICKS, BB ;
MEYERS, TP .
ECOLOGY, 1988, 69 (05) :1331-1340
[7]  
BONAN GB, 1993, J CLIMATE, V6, P1882, DOI 10.1175/1520-0442(1993)006<1882:IOSSHI>2.0.CO
[8]  
2
[10]  
BRAKKE TW, 1978, J APPL METEOROL, V17, P955, DOI 10.1175/1520-0450(1978)017&lt