FORCED ASYMPTOTICALLY PERIODIC-SOLUTIONS OF PREDATOR-PREY SYSTEMS WITH OR WITHOUT HEREDITARY EFFECTS

被引:25
作者
CUSHING, JM [1 ]
机构
[1] UNIV ARIZONA,DEPT MATH,TUCSON,AZ 85721
关键词
Compendex;
D O I
10.1137/0130059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
ECOLOGY
引用
收藏
页码:665 / 674
页数:10
相关论文
共 12 条
[1]   STABLE LIMIT CYCLES IN PREY-PREDATOR POPULATIONS [J].
ALBRECHT, F ;
GATZKE, H ;
WAX, N .
SCIENCE, 1973, 181 (4104) :1073-1074
[2]  
BOWNDS J N, 1975, Mathematical Biosciences, V26, P41, DOI 10.1016/0025-5564(75)90093-0
[3]  
Coddington E. A., 1955, THEORY ORDINARY DIFF
[4]  
CORDUNEANU C, 1973, MATHEMATICS SCI ENGI, V104
[5]   OPERATOR EQUATION AND BOUNDED SOLUTIONS OF INTEGRO-DIFFERENTIAL SYSTEMS [J].
CUSHING, JM .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1975, 6 (03) :433-445
[6]   PERTURBATION OF 2-DIMENSIONAL PREDATOR-PREY EQUATIONS [J].
FREEDMAN, HI ;
WALTMAN, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1975, 28 (01) :1-10
[7]   PERTURBATION OF 2-DIMENSIONAL PREDATOR-PREY EQUATIONS WITH AN UNPERTURBED CRITICAL-POINT [J].
FREEDMAN, HI ;
WALTMAN, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1975, 29 (04) :719-733
[8]  
HALANAY A, 1966, MATH SCI ENGINEERING, V23
[9]   LIMIT CYCLES IN PREDATOR-PREY COMMUNITIES [J].
MAY, RM .
SCIENCE, 1972, 177 (4052) :900-+
[10]  
MONTROLL EN, 1971, VOLTERRA OTHER NONLI