THE INITIAL-DIRICHLET PROBLEM FOR A 4TH-ORDER PARABOLIC EQUATION IN LIPSCHITZ CYLINDERS

被引:17
作者
BROWN, RM [1 ]
SHEN, ZW [1 ]
机构
[1] PRINCETON UNIV,DEPT MATH,PRINCETON,NJ 08544
关键词
D O I
10.1512/iumj.1990.39.39059
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the initial-Dirichlet problem for the fourth-order parabolic equation partial t + DELTA-2 on a cylinder (0,T) x D where D subset-of R(n) is a bounded domain with Lipschitz boundary. On the lateral boundary (0,T) x partial D we specify the boundary value of the function to lie in a Sobolev space of functions having one spatial derivative and one quarter of a time derivative in L2. The normal derivative is taken to lie in L2. We only consider the case of homogeneous initial data. With these assumptions, we show that there exists a unique solution whose spatial gradient has parabolic maximal function in L2. The main interest of these results lies in the weak smoothness assumptions on the lateral boundary.
引用
收藏
页码:1313 / 1353
页数:41
相关论文
共 20 条
[1]  
BROWN R, 1987, THESIS U MINNESOTA
[3]  
BROWN RM, 1989, P AM MATH SOC, V107, P237
[4]  
Calderon A. P., 1985, RECENT PROGR FOURIER, P33
[5]   THE CAUCHY INTEGRAL DEFINES AN OPERATOR ON L2 FOR LIPSCHITZ-CURVES [J].
COIFMAN, RR ;
MCINTOSH, A ;
MEYER, Y .
ANNALS OF MATHEMATICS, 1982, 116 (02) :361-387
[6]   THE DIRICHLET PROBLEM FOR THE BIHARMONIC EQUATION IN A LIPSCHITZ DOMAIN [J].
DAHLBERG, BEJ ;
KENIG, CE ;
VERCHOTA, GC .
ANNALES DE L INSTITUT FOURIER, 1986, 36 (03) :109-135
[7]  
Fabes E.B., 1979, P S PURE MATH, VXXXV, P179
[8]   POTENTIAL TECHNIQUES FOR BOUNDARY-VALUE PROBLEMS ON C1-DOMAINS [J].
FABES, EB ;
JODEIT, M ;
RIVIERE, NM .
ACTA MATHEMATICA, 1978, 141 (3-4) :165-186
[9]  
FOLLAND CB, 1976, PRINCETON MATH NOTES, V17
[10]  
JERISON DS, 1982, B AM MATH SOC, V4, P203