THE FREE-ENERGY OF THE POTTS-MODEL

被引:9
作者
BHATTACHARYA, T
LACAZE, R
MOREL, A
机构
[1] LOS ALAMOS NATL LAB,GRP T8,LOS ALAMOS,NM 87545
[2] SERV PHYS THEOR SACLAY,F-91191 GIF SUR YVETTE,FRANCE
关键词
D O I
10.1016/0920-5632(94)90478-2
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We present a large q expansion of the 2d q-states Potts model free energies up to order 10 in 1/square-root q. Its analysis leads us to an ansatz which, in the first-order region, incorporates properties inferred from the known critical regime at q = 4, and predicts, for q > 4, the n(th) energy cumulant scales as the power (3n/2 - 2) of the correlation length. The parameter-free energy distributions reproduce accurately, without reference to any interface effect, the numerical data obtained in a simulation for q = 10 with lattices of linear dimensions up to L = 50. The pure phase specific heats are predicted to be much larger, at q less-than-or-equal-to 10, than the values extracted from current finite size scaling analysis of extrema.
引用
收藏
页码:671 / 673
页数:3
相关论文
共 19 条
[1]   POTTS MODEL AT CRITICAL-TEMPERATURE [J].
BAXTER, RJ .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1973, 6 (23) :L445-L448
[2]  
BERG B, 1992, IN PRESS P COMPUTER
[3]   A NUMERICAL STUDY OF FINITE-SIZE SCALING FOR 1ST-ORDER PHASE-TRANSITIONS [J].
BILLOIRE, A ;
LACAZE, R ;
MOREL, A .
NUCLEAR PHYSICS B, 1992, 370 (03) :773-796
[4]   OBSERVATION OF FSS FOR A 1ST-ORDER PHASE-TRANSITION [J].
BILLOIRE, A ;
NEUHAUS, T ;
BERG, B .
NUCLEAR PHYSICS B, 1993, 396 (2-3) :779-788
[5]  
BILLOIRE A, UNPUB
[7]   FINITE SIZE SCALING ANALYSIS OF ISING-MODEL BLOCK DISTRIBUTION-FUNCTIONS [J].
BINDER, K .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 43 (02) :119-140
[8]   A RIGOROUS THEORY OF FINITE-SIZE SCALING AT 1ST-ORDER PHASE-TRANSITIONS [J].
BORGS, C ;
KOTECKY, R .
JOURNAL OF STATISTICAL PHYSICS, 1990, 61 (1-2) :79-119
[9]   FINITE-SIZE SCALING FOR POTTS MODELS [J].
BORGS, C ;
KOTECKY, R ;
MIRACLESOLE, S .
JOURNAL OF STATISTICAL PHYSICS, 1991, 62 (3-4) :529-551
[10]  
BORGS C, 1992, J PHYS I, V2, P649