ON THE PERIODS OF GENERALIZED FIBONACCI RECURRENCES

被引:30
作者
BRENT, RP
机构
关键词
FIBONACCI SEQUENCE; GENERALIZED FIBONACCI SEQUENCE; IRREDUCIBLE TRINOMIAL; LINEAR RECURRENCE; MAXIMAL PERIOD; PERIODIC INTEGER SEQUENCE; PRIMITIVE TRINOMIAL; PSEUDORANDOM NUMBERS;
D O I
10.2307/2153583
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a simple condition for a linear recurrence (mod 2w) of degree r to have the maximal possible period 2w-1(2r - 1). It follows that the period is maximal in the cases of interest for pseudorandom number generation, i.e., for three-term linear recurrences defined by trinomials which are primitive (mod 2) and of degree r > 2. We consider the enumeration of certain exceptional polynomials which do not give maximal period, and list all such polynomials of degree less than 15.
引用
收藏
页码:389 / 401
页数:13
相关论文
共 26 条
[1]   RANDOM NUMBER GENERATORS ON VECTOR SUPERCOMPUTERS AND OTHER ADVANCED ARCHITECTURES [J].
ANDERSON, SL .
SIAM REVIEW, 1990, 32 (02) :221-251
[2]  
BRENT RP, 1992, TRCS9203 AUSTR NAT U
[3]  
BRENT RP, 1992, 5TH P AUSTR SUP C ME, P95
[4]   MONTE-CARLO SIMULATIONS - HIDDEN ERRORS FROM GOOD RANDOM NUMBER GENERATORS [J].
FERRENBERG, AM ;
LANDAU, DP ;
WONG, YJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (23) :3382-3384
[5]  
Golomb SW., 1967, SHIFT REGISTER SEQUE
[6]   EMPIRICAL TESTS OF AN ADDITIVE RANDOM NUMBER GENERATOR [J].
GREEN, BF ;
SMITH, JEK ;
KLEM, L .
JOURNAL OF THE ACM, 1959, 6 (04) :527-537
[7]   A REVIEW OF PSEUDORANDOM NUMBER GENERATORS [J].
JAMES, F .
COMPUTER PHYSICS COMMUNICATIONS, 1990, 60 (03) :329-344
[8]  
Knuth D.E., 1981, ART COMPUTER PROGRAM, V2
[9]  
KRISHNAMURTHY EV, 1985, ERROR FREE POLYNOMIA, pCH4
[10]   COMPUTING RECIPROCALS OF POWER-SERIES [J].
KUNG, HT .
NUMERISCHE MATHEMATIK, 1974, 22 (05) :341-348