A MAXIMUM PRINCIPLE FOR BIHARMONIC FUNCTIONS IN LIPSCHITZ AND C(1) DOMAINS

被引:39
作者
PIPHER, J [1 ]
VERCHOTA, G [1 ]
机构
[1] SYRACUSE UNIV,DEPT MATH,SYRACUSE,NY 13244
关键词
D O I
10.1007/BF02565827
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:385 / 414
页数:30
相关论文
共 19 条
[1]   ESTIMATES NEAR BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .2. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1964, 17 (01) :35-&
[2]  
AGMON S, 1959, COMMUN PURE APPL MAT, V12, P6233
[3]  
Agmon S, 1960, B AM MATH SOC, V66, P77, DOI [10.1090/S0002-9904-1960-10402-8, DOI 10.1090/S0002-9904-1960-10402-8]
[4]  
Dahlberg B., 1990, LECTURE NOTES PURE A, V122, P621
[5]   THE DIRICHLET PROBLEM FOR THE BIHARMONIC EQUATION IN A LIPSCHITZ DOMAIN [J].
DAHLBERG, BEJ ;
KENIG, CE ;
VERCHOTA, GC .
ANNALES DE L INSTITUT FOURIER, 1986, 36 (03) :109-135
[6]   HARDY-SPACES AND THE NEUMANN PROBLEM IN L-RHO FOR LAPLACES-EQUATION IN LIPSCHITZ-DOMAINS [J].
DAHLBERG, BEJ ;
KENIG, CE .
ANNALS OF MATHEMATICS, 1987, 125 (03) :437-465
[7]   WEIGHTED NORM INEQUALITIES FOR THE LUSIN AREA INTEGRAL AND THE NONTANGENTIAL MAXIMAL FUNCTIONS FOR FUNCTIONS HARMONIC IN A LIPSCHITZ DOMAIN [J].
DAHLBERG, BEJ .
STUDIA MATHEMATICA, 1980, 67 (03) :297-314
[8]   CARLESON MEASURES, H-1 DUALITY AND WEIGHTED BMO IN NONSMOOTH DOMAINS [J].
FABES, EB ;
KENIG, CE ;
NERI, U .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (04) :547-581
[9]  
JERISON D., 1982, MAA STUDIES MATH, V23, P1
[10]   ON FUNCTIONS OF BOUNDED MEAN OSCILLATION [J].
JOHN, F ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1961, 14 (03) :415-&