ON WOLTJERS VARIATIONAL PRINCIPLE FOR FORCE-FREE FIELDS

被引:39
作者
LAURENCE, P [1 ]
AVELLANEDA, M [1 ]
机构
[1] UNIV MILANO,DIPARTAMENTO MATEMAT,I-20133 MILAN,ITALY
关键词
D O I
10.1063/1.529321
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The existence of minimizers for Woltjer's variational principle is established and that the minimizers are force-free fields. This method has the nature of a constructive implicit function theorem and handles successfully the nonconvex constraint of constant total helicity. Domains of arbitrary connectivity are allowed as well as nonhomogeneous boundary conditions and periods.
引用
收藏
页码:1240 / 1253
页数:14
相关论文
共 33 条
[1]  
[Anonymous], 1986, SEL MATH SOV
[2]  
AVELLANEDA M, UNPUB SOME REMARKS V
[3]  
BELTAMI F, 1889, RENDICONTI REALE IST, V11, P22
[4]  
BELTAMI F, 1889, RENDICONTI REALE IST, V11, P121
[5]   Topological Invariants of Field Lines Rooted to Planes [J].
Berger, Mitchell A. .
GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 1985, 34 (1-4) :265-281
[6]   STRUCTURE AND STABILITY OF CONSTANT-ALPHA FORCE-FREE FIELDS [J].
BERGER, MA .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 1985, 59 (03) :433-444
[7]   THE TOPOLOGICAL PROPERTIES OF MAGNETIC HELICITY [J].
BERGER, MA ;
FIELD, GB .
JOURNAL OF FLUID MECHANICS, 1984, 147 (OCT) :133-148
[8]   ENERGY PRINCIPLE WITH GLOBAL INVARIANTS [J].
BHATTACHARJEE, A ;
DEWAR, RL .
PHYSICS OF FLUIDS, 1982, 25 (05) :887-897
[9]  
BIJKHOVSKII EB, 1960, T MAT I STEKLOVA, V59, P6
[10]  
BLANK A, 1957, MHS NYO6486 PREPR