SPECTRAL PROPERTIES OF SYSTEMS WITH DYNAMIC LOCALIZATION .2. FINITE-SAMPLE APPROACH

被引:31
作者
DITTRICH, T
SMILANSKY, U
机构
[1] Department of Nuclear Physics, The Weizmann Institute of Science, Rehovot
[2] Institut für Physik, Universität Augsburg, Augsburg, D-8900
关键词
D O I
10.1088/0951-7715/4/1/007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study correlations in the quasi-energy spectrum of the quantum kicked rotor restricted to a Hilbert space of finite dimension. The spectral correlations depend on the ratio gamma of the localization length to the basis size. We derive semiclassical expressions for the two-point cluster function which interpolate between COE behaviour for gamma --> infinity and Poissonian (lack of correlations) for gamma --> 0. We show how the diffusive nature of the classical dynamics finds its expression in the quantal spectral correlations.
引用
收藏
页码:85 / 101
页数:17
相关论文
共 28 条
[1]  
ABRAMOWITZ M, 1964, NBS APPLIED MATH SER, V55
[2]   Renormalisation of curlicues [J].
Berry, M. V. ;
Goldberg, J. .
NONLINEARITY, 1988, 1 (01) :1-26
[4]  
BLUMEL R, 1986, J CHEM PHYS, V84, P2604, DOI 10.1063/1.450330
[5]   RANDOM-MATRIX DESCRIPTION OF CHAOTIC SCATTERING - SEMICLASSICAL APPROACH [J].
BLUMEL, R ;
SMILANSKY, U .
PHYSICAL REVIEW LETTERS, 1990, 64 (03) :241-244
[6]   CLASSICAL TRANSPORT EFFECTS ON CHAOTIC LEVELS [J].
BOHIGAS, O ;
TOMSOVIC, S ;
ULLMO, D .
PHYSICAL REVIEW LETTERS, 1990, 65 (01) :5-8
[7]   RANDOM-MATRIX PHYSICS - SPECTRUM AND STRENGTH FLUCTUATIONS [J].
BRODY, TA ;
FLORES, J ;
FRENCH, JB ;
MELLO, PA ;
PANDEY, A ;
WONG, SSM .
REVIEWS OF MODERN PHYSICS, 1981, 53 (03) :385-479
[8]   NON-RECURRENT BEHAVIOR IN QUANTUM DYNAMICS [J].
CASATI, G ;
GUARNERI, I .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 95 (01) :121-127
[9]  
Chirikov B. V., 1981, SOVIET SCI REV C, V2, P209
[10]   SPECTRAL PROPERTIES OF SYSTEMS WITH DYNAMIC LOCALIZATION .1. THE LOCAL SPECTRUM [J].
DITTRICH, T ;
SMILANSKY, U .
NONLINEARITY, 1991, 4 (01) :59-84