WAVELET ANALYSIS OF THE SELF-SIMILARITY OF DIFFUSION-LIMITED AGGREGATES AND ELECTRODEPOSITION CLUSTERS

被引:76
作者
ARGOUL, F [1 ]
ARNEODO, A [1 ]
ELEZGARAY, J [1 ]
GRASSEAU, G [1 ]
机构
[1] CATHOLIC UNIV LOUVAIN, INST PHYS THEOR, B-1348 LOUVAIN LA NEUVE, BELGIUM
来源
PHYSICAL REVIEW A | 1990年 / 41卷 / 10期
关键词
D O I
10.1103/PhysRevA.41.5537
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present the wavelet transform as a natural tool for characterizing the geometrical complexity of numerical and experimental two-dimensional fractal aggregates. We illustrate the efficiency of this mathematical microscope to reveal the construction rule of self-similar snowflake fractals and to capture the local scaling properties of multifractal aggregates through the determination of local pointwise dimensions (x). We apply the wavelet transform to small-mass (M25×104 particles) Witten and Sander diffusion-limited aggregates that are found to be globally self-similar with a unique scaling exponent (x)=1.600.02. We reproduce this analysis for experimental two-dimensional copper electrodeposition clusters; in the limit of small ionic concentration and small current, these clusters are globally self-similar with a unique scaling exponent (x)=1.630.03. These results strongly suggest that in this limit the electrodeposition growth mechanism is governed by the two-dimensional diffusion-limited aggregation process. © 1990 The American Physical Society.
引用
收藏
页码:5537 / 5560
页数:24
相关论文
共 159 条
[1]   GROWTH PROBABILITY-DISTRIBUTION IN KINETIC AGGREGATION PROCESSES [J].
AMITRANO, C ;
CONIGLIO, A ;
DILIBERTO, F .
PHYSICAL REVIEW LETTERS, 1986, 57 (08) :1016-1019
[2]   WAVELET ANALYSIS OF TURBULENCE REVEALS THE MULTIFRACTAL NATURE OF THE RICHARDSON CASCADE [J].
ARGOUL, F ;
ARNEODO, A ;
GRASSEAU, G ;
GAGNE, Y ;
HOPFINGER, EJ ;
FRISCH, U .
NATURE, 1989, 338 (6210) :51-53
[3]   WAVELET TRANSFORM OF FRACTAL AGGREGATES [J].
ARGOUL, F ;
ARNEODO, A ;
ELEZGARAY, J ;
GRASSEAU, G ;
MURENZI, R .
PHYSICS LETTERS A, 1989, 135 (6-7) :327-336
[4]   SELF-SIMILARITY OF DIFFUSION-LIMITED AGGREGATES AND ELECTRODEPOSITION CLUSTERS [J].
ARGOUL, F ;
ARNEODO, A ;
GRASSEAU, G .
PHYSICAL REVIEW LETTERS, 1988, 61 (22) :2558-2561
[5]   FRACTAL DIMENSIONS AND F(ALPHA) SPECTRUM FOR STRANGE ATTRACTORS [J].
ARGOUL, F ;
ARNEODO, A ;
GRASSEAU, G .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1988, 68 (10) :519-522
[6]  
ARGOUL F, UNPUB
[7]  
ARGOUL F, 1989, IN PRESS P INT WORKS
[8]   UNCOVERING THE ANALYTICAL SAFFMAN-TAYLOR FINGER IN UNSTABLE VISCOUS FINGERING AND DIFFUSION-LIMITED AGGREGATION [J].
ARNEODO, A ;
COUDER, Y ;
GRASSEAU, G ;
HAKIM, V ;
RABAUD, M .
PHYSICAL REVIEW LETTERS, 1989, 63 (09) :984-987
[9]   WAVELET TRANSFORM OF MULTIFRACTALS [J].
ARNEODO, A ;
GRASSEAU, G ;
HOLSCHNEIDER, M .
PHYSICAL REVIEW LETTERS, 1988, 61 (20) :2281-2284
[10]   FRACTAL DIMENSIONS AND F(ALPHA) SPECTRUM OF THE HENON ATTRACTOR [J].
ARNEODO, A ;
GRASSEAU, G ;
KOSTELICH, EJ .
PHYSICS LETTERS A, 1987, 124 (08) :426-432