SU(2) COHERENT-STATE PATH-INTEGRAL

被引:69
作者
KOCHETOV, EA
机构
[1] Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research
关键词
D O I
10.1063/1.530913
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The SU(2) coherent-state path integral is used to represent the matrix element of a propagator in the SU(2) coherent-state basis. It is argued that the continuum representation of this integral is correct provided the necessary boundary term is taken into account. In the case of the SU(2) dynamical symmetry the path integral is explicitly computed by means of a change of variables, the SU(2) motion of the underlying phase space. The correct stationary-phase expansion for the propagator in terms of the total action including boundary term and classical trajectories is obtained. (C) 1995 American Institute of Physics.
引用
收藏
页码:4667 / 4679
页数:13
相关论文
共 35 条
[1]   ATOMIC COHERENT STATES IN QUANTUM OPTICS [J].
ARECCHI, FT ;
THOMAS, H ;
GILMORE, R ;
COURTENS, E .
PHYSICAL REVIEW A, 1972, 6 (06) :2211-&
[2]  
Berezin F. A., 1971, TMF, V6, P194
[3]  
BEREZIN FA, 1980, USP FIZ NAUK+, V132, P497, DOI 10.1070/PU1980v023n11ABEH005062
[4]   GENERAL CONCEPT OF QUANTIZATION [J].
BEREZIN, FA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 40 (02) :153-174
[5]   PATH-INTEGRALS FOR THE NUCLEAR MANY-BODY PROBLEM [J].
BLAIZOT, JP ;
ORLAND, H .
PHYSICAL REVIEW C, 1981, 24 (04) :1740-1761
[6]   PATH-INTEGRALS AND GEOMETRY OF TRAJECTORIES [J].
BLAU, M ;
KESKIVAKKURI, E ;
NIEMI, AJ .
PHYSICS LETTERS B, 1990, 246 (1-2) :92-98
[7]  
Buslaev V. S., 1980, VARIATIONAL CALCULUS
[9]   SL(2,C) MULTILEVEL DYNAMICS [J].
ELLINAS, D .
PHYSICAL REVIEW A, 1992, 45 (03) :1822-1828
[10]   SPIN TUNNELING IN THE SEMICLASSICAL LIMIT [J].
ENZ, M ;
SCHILLING, R .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1986, 19 (11) :1765-1770