FINDING K-POINTS WITH MINIMUM DIAMETER AND RELATED PROBLEMS

被引:63
作者
AGGARWAL, A
IMAI, H
KATOH, N
SURI, S
机构
[1] IBM CORP,THOMAS J WATSON RES CTR,YORKTOWN HTS,NY 10598
[2] KYUSHU UNIV,FUKUOKA 812,JAPAN
[3] KOBE UNIV COMMERCE,KOBE,JAPAN
[4] BELL COMMUN RES INC,MORRISTOWN,NJ 07960
关键词
D O I
10.1016/0196-6774(91)90022-Q
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let S be a set consisting of n points in the plane. We consider the problem of finding k points of S that form a "small" set under some given measure, and present efficient algorithms for several natural measures including the diameter and the variance. © 1991.
引用
收藏
页码:38 / 56
页数:19
相关论文
共 15 条
[1]   A LINEAR-TIME ALGORITHM FOR COMPUTING THE VORONOI DIAGRAM OF A CONVEX POLYGON [J].
AGGARWAL, A ;
GUIBAS, LJ ;
SAXE, J ;
SHOR, PW .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (06) :591-604
[2]  
AGGARWAL A, 1989, 3RD P ANN ACM S COMP, P278
[3]  
Andrews HC, 1972, INTRO MATH TECHNIQUE
[4]  
ASANO T, 1990, 6TH P INT C THEOR AP
[5]  
ASANO T, 1988, 4TH P ANN ACM S COMP, P252
[6]   VORONOI DIAGRAMS AND ARRANGEMENTS [J].
EDELSBRUNNER, H ;
SEIDEL, R .
DISCRETE & COMPUTATIONAL GEOMETRY, 1986, 1 (01) :25-44
[7]  
EPPSTEIN D, IN PRESS DISCRETE CO
[8]  
Hartigan JohnA., 1975, CLUSTERING ALGORITHM
[9]  
HERSHBERGER J, 1989, 5TH P ANN ACM S COMP
[10]  
HERSHBERGER J, IN PRESS J ALGORITHM