OVEREXPRESSION OF ARABIDOPSIS COP1 RESULTS IN PARTIAL SUPPRESSION OF LIGHT-MEDIATED DEVELOPMENT - EVIDENCE FOR A LIGHT-INACTIVABLE REPRESSOR OF PHOTOMORPHOGENESIS

被引:141
作者
MCNELLIS, TW [1 ]
VONARNIM, AG [1 ]
DENG, XW [1 ]
机构
[1] YALE UNIV, OSBORN MEM LABS, DEPT BIOL, NEW HAVEN, CT 06520 USA
关键词
D O I
10.1105/tpc.6.10.1391
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Arabidopsis seedlings are genetically endowed with the capability to follow two distinct developmental programs: photomorphogenesis in the light and skotomorphogenesis in darkness. The regulatory protein CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) has been postulated to act as a repressor of photomorphogenesis in the dark because loss-of-function mutations of COP1 result in dark-grown seedlings phenocopying the light-grown wild-type seedlings. In this study, we tested this working model by overexpressing COP1 in the plant and examining its inhibitory effects on photomorphogenic development. Stable transgenic Arabidopsis lines overexpressing COP1 were generated through Agrobacterium-mediated transformation. Overexpression was achieved using either the strong cauliflower mosaic virus 35S RNA promoter or additional copies of the wild-type gene. Analysis of these transgenic lines demonstrated that higher levels of COP1 can inhibit aspects of photomorphogenic seedling development mediated by either phytochromes or a blue light receptor, and the extent of Inhibition correlated quantitatively with the in vivo COP1 levels; This result provides direct evidence that COP1 acts as a molecular repressor of photomorphogenic development and that multiple photoreceptors can independently mediate the light inactivation of COP1. It also suggests that a controlled inactivation of COP1 may provide a basis for the ability of plants to respond quantitatively to changing light signals, such as fluence rate and photoperiod.
引用
收藏
页码:1391 / 1400
页数:10
相关论文
共 40 条
[1]   HY4 GENE OF A-THALIANA ENCODES A PROTEIN WITH CHARACTERISTICS OF A BLUE-LIGHT PHOTORECEPTOR [J].
AHMAD, M ;
CASHMORE, AR .
NATURE, 1993, 366 (6451) :162-166
[2]   REGULATORY HIERARCHY OF PHOTOMORPHOGENIC LOCI - ALLELE-SPECIFIC AND LIGHT-DEPENDENT INTERACTION BETWEEN THE HY5 AND COP1 LOCI [J].
ANG, LH ;
DENG, XW .
PLANT CELL, 1994, 6 (05) :613-628
[3]   CYCLIC-GMP AND CALCIUM MEDIATE PHYTOCHROME PHOTOTRANSDUCTION [J].
BOWLER, C ;
NEUHAUS, G ;
YAMAGATA, H ;
CHUA, NH .
CELL, 1994, 77 (01) :73-81
[4]   A FUSCA GENE OF ARABIDOPSIS ENCODES A NOVEL PROTEIN ESSENTIAL FOR PLANT DEVELOPMENT [J].
CASTLE, LA ;
MEINKE, DW .
PLANT CELL, 1994, 6 (01) :25-41
[6]  
CLARK MF, 1986, METHOD ENZYMOL, V118, P742
[7]   ARABIDOPSIS HY8 LOCUS ENCODES PHYTOCHROME-A [J].
DEHESH, K ;
FRANCI, C ;
PARKS, BM ;
SEELEY, KA ;
SHORT, TW ;
TEPPERMAN, JM ;
QUAIL, PH .
PLANT CELL, 1993, 5 (09) :1081-1088
[8]   GENETIC AND PHENOTYPIC CHARACTERIZATION OF COP-1 MUTANTS OF ARABIDOPSIS THALIANA [J].
DENG, XW ;
QUAIL, PH .
PLANT JOURNAL, 1992, 2 (01) :83-95
[9]   FRESH VIEW OF LIGHT SIGNAL-TRANSDUCTION IN PLANTS [J].
DENG, XW .
CELL, 1994, 76 (03) :423-426
[10]   COP1, AN ARABIDOPSIS REGULATORY GENE, ENCODES A PROTEIN WITH BOTH A ZINC-BINDING MOTIF AND A G-BETA HOMOLOGOUS DOMAIN [J].
DENG, XW ;
MATSUI, M ;
WEI, N ;
WAGNER, D ;
CHU, AM ;
FELDMANN, KA ;
QUAIL, PH .
CELL, 1992, 71 (05) :791-801