INVARIANT SUBSPACES, DILATION THEORY, AND THE STRUCTURE OF THE PREDUAL OF A DUAL ALGEBRA .1.

被引:90
作者
APOSTOL, C
BERCOVICI, H
FOIAS, C
PEARCY, C
机构
[1] MATH SCI RES INST,BERKELEY,CA 94720
[2] INDIANA UNIV,DEPT MATH,BLOOMINGTON,IN 47405
[3] UNIV MICHIGAN,DEPT MATH,ANN ARBOR,MI 48109
关键词
D O I
10.1016/0022-1236(85)90093-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:369 / 404
页数:36
相关论文
共 37 条
[1]   AN INVARIANT SUBSPACE THEOREM [J].
AGLER, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 1980, 38 (03) :315-323
[2]  
APOSTOL C, 1982, J OPERAT THEOR, V7, P247
[3]  
APOSTOL C, 1980, J OPERATOR THEORY, V3, P159
[4]  
APOSTOL C, 1979, J OPERAT THEOR, V2, P49
[5]  
APOSTOL C, INTEGRAL EQUATIONS O
[6]  
BERCOVICI H, 1981, ACTA SCI MATH, V43, P243
[7]  
BERCOVICI H, 1982, MICH MATH J, V29, P371
[8]  
BERCOVICI H, 1983, MICH MATH J, V30, P335
[9]   A REFLEXIVITY THEOREM FOR WEAKLY CLOSED SUBSPACES OF OPERATORS [J].
BERCOVICI, H .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 288 (01) :139-146
[10]   ON DOMINATING SEQUENCES IN THE UNIT DISK [J].
BERCOVICI, H .
MATHEMATISCHE ZEITSCHRIFT, 1984, 188 (01) :33-43