QUANTUM INHOMOGENOUS GROUPS RELATED TO MANIN PLANE

被引:6
作者
REMBIELINSKI, J
机构
[1] Department of Theoretical Physics, University of Łódź, PL-90-236 Lodz
关键词
D O I
10.1016/0370-2693(92)91329-8
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper we define a quantum deformation of the inhomogenous general linear group IGL(2, C), and we discuss deformations of groups of rigid motions of the quantum euclidean plane, quantum Minkowski (Lobaczewski) plane and quantum cylinder. It is found that the full quantum IGL(2)q group cannot be defined by the Bethe ansatz assumption i.e. in the quantum R-matrix framework.
引用
收藏
页码:335 / 340
页数:6
相关论文
共 12 条
[1]   ON THE QUANTUM DIFFERENTIAL-CALCULUS AND THE QUANTUM HOLOMORPHICITY [J].
BRZEZINSKI, T ;
DABROWSKI, H ;
REMBIELINSKI, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (01) :19-24
[2]  
BRZEZINSKI T, 1991, UL1 PREPR
[3]  
CONNES A, 1986, EXTRAIT PUBLICATIONS, V62
[4]  
FADEEV LD, 1988, ALGEBRAIC ANAL, V1
[5]   Q-DEFORMATION OF POINCARE ALGEBRA [J].
LUKIERSKI, J ;
RUEGG, H ;
NOWICKI, A ;
TOLSTOY, VN .
PHYSICS LETTERS B, 1991, 264 (3-4) :331-338
[7]   INHOMOGENEOUS QUANTUM GROUPS [J].
SCHLIEKER, M ;
WEICH, W ;
WEIXLER, R .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1992, 53 (01) :79-82
[8]   CONSISTENT MULTIPARAMETER QUANTIZATION OF GL(N) [J].
SUDBERY, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (15) :L697-L704
[9]  
SUDBERY A, ANLHEPCP9032 PREPR
[10]   COMPACT MATRIX PSEUDOGROUPS [J].
WORONOWICZ, SL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 111 (04) :613-665