INTERMITTENCY IN A CASCADE MODEL FOR 3-DIMENSIONAL TURBULENCE

被引:164
作者
JENSEN, MH [1 ]
PALADIN, G [1 ]
VULPIANI, A [1 ]
机构
[1] UNIV AQUILA, DIPARTIMENTO FIS, I-67010 LAQUILA, ITALY
关键词
D O I
10.1103/PhysRevA.43.798
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We discuss a possible mechanism for intermittency of the energy dissipation in a model for three-dimensional fully developed turbulence. We compute the structure functions for the velocity field and show that their behavior can be described in the context of a multifractal approach. We also compute the instantaneous maximum Lyapunov exponent and the corresponding (stability) eigenvector. Violent bursts of energy dissipation are related to a sudden increase of the instantaneous Lyapunov exponent, and simultaneous localization of its eigenvector on the high wave numbers at the end of the inertial range. In particular, we relate the correction to the k-5/3 Kolmogorov law for the energy spectrum to the fractal dimension extracted by temporal sequences both of the instantaneous Lyapunov exponent and of the eigenvector.
引用
收藏
页码:798 / 805
页数:8
相关论文
共 41 条
  • [1] HIGH-ORDER VELOCITY STRUCTURE FUNCTIONS IN TURBULENT SHEAR FLOWS
    ANSELMET, F
    GAGNE, Y
    HOPFINGER, EJ
    ANTONIA, RA
    [J]. JOURNAL OF FLUID MECHANICS, 1984, 140 (MAR) : 63 - 89
  • [2] Benettin G., 1980, MECCANICA, V15, P9, DOI DOI 10.1007/BF02128236
  • [3] Benettin G., 1980, MECCANICA, V15, P21, DOI 10.1007/BF02128236
  • [4] ON THE MULTIFRACTAL NATURE OF FULLY-DEVELOPED TURBULENCE AND CHAOTIC SYSTEMS
    BENZI, R
    PALADIN, G
    PARISI, G
    VULPIANI, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (18): : 3521 - 3531
  • [5] SIMPLE DYNAMICAL MODEL OF INTERMITTENT FULLY DEVELOPED TURBULENCE
    FRISCH, U
    SULEM, PL
    NELKIN, M
    [J]. JOURNAL OF FLUID MECHANICS, 1978, 87 (AUG) : 719 - 736
  • [6] Frish U., 1985, TURBULENCE PREDICTAB, P84
  • [7] Gledzer E. B., 1973, Soviet Physics - Doklady, V18, P216
  • [8] STABILITY AND LYAPUNOV STABILITY OF DYNAMIC-SYSTEMS - A DIFFERENTIAL APPROACH AND A NUMERICAL-METHOD
    GOLDHIRSCH, I
    SULEM, PL
    ORSZAG, SA
    [J]. PHYSICA D, 1987, 27 (03): : 311 - 337
  • [9] COMPUTATION OF THE DIMENSION OF A MODEL OF FULLY-DEVELOPED TURBULENCE
    GRAPPIN, R
    LEORAT, J
    POUQUET, A
    [J]. JOURNAL DE PHYSIQUE, 1986, 47 (07): : 1127 - 1136
  • [10] CHARACTERIZATION OF STRANGE ATTRACTORS
    GRASSBERGER, P
    PROCACCIA, I
    [J]. PHYSICAL REVIEW LETTERS, 1983, 50 (05) : 346 - 349