The biogenesis of the polar flagellum in Caulobacter crescentus is limited to a specific time in the cell cycle and to a specific site on the cell. The basal body is the first part of the flagellum to be assembled. In this report we identify a cluster of genes encoding basal body components and describe their transcriptional regulation. The genes in this cluster form an operon whose expression is controlled temporally. The first two genes encode homologs of FlgF and FlgG, which are the proximal and distal rod proteins, respectively. The sequences of the N and C termini of the Salmonella typhimurium flagellar axial proteins, rod, hook and HAP-1, known to be highly conserved, share a high degree of sequence identity with the FlgF and FlgG rod proteins of the distantly related, C. crescentus. Two additional genes in the flgF, flgG operon, flaD and flgH, both encode proteins with potentially cleavable signal sequences. The flgH gene, encoding the L-ring protein, is also transcribed from an internal promoter. Transcription from the flgF promoter initiates prior to initiation at the internal flgH promoter. The internal promoter and its activator site reside within the C-terminal coding sequence of the upstream flaD gene. This type of gene overlap is also observed in bacterial genes involved in cell division. Flagellum biogenesis, like cell division, is a morphogenic event that requires the orderly assembly of component proteins and the overlapping gene organization may affect this "ordering" of assembly. The promoters for the flgF operon and the flgH gene use sigma 54 to initiate transcription. The use of σ54 promoters, known to require cognate binding proteins, could allow the fine-tuning that provides the temporal ordering of flagellar gene transcription. In this context, we have found that the flgF operon and the distal flgI gene encoding the P-ring, share a σ54 activator sequence (class IIA) that differs from the flgH L-ring gene σ54 activator site (class IIB) and the hook cluster (class IIC) σ54 activator site. The sequential activation of these three subgroups of structural genes reflects the order of assembly of their gene products into the flagellum. © 1992.