PERTURBED HARMONIC-OSCILLATOR LADDER OPERATORS - EIGENENERGIES AND EIGENFUNCTIONS FOR THE X2+LAMBDA-X2 (1+GX2) INTERACTION

被引:21
作者
BESSIS, N
BESSIS, G
HADINGER, G
机构
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1983年 / 16卷 / 03期
关键词
D O I
10.1088/0305-4470/16/3/010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:497 / 512
页数:16
相关论文
共 20 条
[1]   THE PERTURBED LADDER OPERATOR METHOD - PERTURBED EIGENVALUES AND EIGENFUNCTIONS FROM FINITE-DIFFERENCE CONSIDERATIONS [J].
BESSIS, N ;
BESSIS, G ;
HADINGER, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (11) :2839-2859
[2]   PERTURBED LADDER OPERATOR METHOD - ANALYTICAL DETERMINATION OF GENERALIZED CENTRAL FIELD ENERGIES AND WAVEFUNCTIONS [J].
BESSIS, N ;
BESSIS, G ;
DAKHEL, B ;
HADINGER, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1978, 11 (03) :467-483
[3]   THE PERTURBED LADDER OPERATOR METHOD - CLOSED FORM EXPRESSIONS OF PERTURBED WAVEFUNCTIONS AND MATRIX-ELEMENTS [J].
BESSIS, N ;
BESSIS, G ;
HADINGER, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (05) :1651-1663
[4]   THEORETICAL-ANALYSIS OF THE CENTRIFUGAL-DISTORTION CONTRIBUTIONS TO THE ROTATIONAL SPECTRA OF 2-PI- DIATOMICS [J].
BESSIS, N ;
TERGIMAN, YS .
JOURNAL OF MOLECULAR SPECTROSCOPY, 1982, 93 (01) :16-45
[5]   A NOTE ON THE SCHRODINGER-EQUATION FOR THE X2 + LAMBDA-X2/(1 + GX2) POTENTIAL [J].
BESSIS, N ;
BESSIS, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (12) :2780-2785
[6]   EIGENVALUES OF LAMBDA X2M ANHARMONIC OSCILLATORS [J].
BISWAS, SN ;
DATTA, K ;
SAXENA, RP ;
SRIVASTAVA, PK ;
VARMA, VS .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (09) :1190-1195
[7]  
DRESZER J, 1975, MATH HDB TECHNIK NAT, P650
[8]   ON THE SCHRODINGER-EQUATION FOR THE X2 +LAMBDAX2-(1+GX2) INTERACTION [J].
FLESSAS, GP .
PHYSICS LETTERS A, 1981, 83 (03) :121-122
[9]   DEFINITE INTEGRALS AS SOLUTIONS FOR THE X2+LAMBDAX2/(1+GX2) POTENTIAL [J].
FLESSAS, GP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (03) :L97-L101
[10]   INTERACTION LAMBDA-X2-(1 + GX2) REVISITED [J].
HAUTOT, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 39 (01) :72-93