FIXED-POINT THEOREMS AND MORSE LEMMA FOR LIPSCHITZIAN FUNCTIONS

被引:15
作者
BONNISSEAU, JM
CORNET, B
机构
[1] CORE, 1348 Louvain-la-Neuve, 34, Voie du Roman Pays
关键词
D O I
10.1016/0022-247X(90)90305-Y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a fixed-point theorem for set-valued mappings defined on a nonempty compact subset X of Rn which can be represented by inequality constraints, i.e., X={x∈Rn| f(x)≤0}, f locally Lipschitzian and satisfying a nondegeneracy assumption outside of X. This class of sets extends significantly the class of convex, compact sets with a nonempty interior. Topological properties of such sets X are proved (continuous deformation retract of a ball, acyclicity) as a consequence of a generalization of Morse's lemma for Lipschitzian real-valued function defined on Rn a result also of interest for itself. © 1990.
引用
收藏
页码:318 / 332
页数:15
相关论文
共 21 条
[1]  
BERGE C, 1966, ESPACES TOPOLOGIQUES
[2]  
BERGMAN G, 1968, T AM MATH SOC, V130, P353
[3]  
BONNISSEAU JM, IN PRESS INT EC REV
[4]   FIXED POINT THEORY OF MULTI-VALUED MAPPINGS IN TOPOLOGICAL VECTOR SPACES [J].
BROWDER, FE .
MATHEMATISCHE ANNALEN, 1968, 177 (04) :283-&
[5]  
Clarke F.H., 1983, OPTIMIZATION NONSMOO
[6]   GENERALIZED GRADIENTS AND APPLICATIONS [J].
CLARKE, FH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 205 (APR) :247-262
[7]  
CORNET B, 1975, CR ACAD SCI A MATH, V281, P479
[8]   FIXED POINT THEOREMS FOR MULTI-VALUED TRANSFORMATIONS [J].
EILENBERG, S ;
MONTGOMERY, D .
AMERICAN JOURNAL OF MATHEMATICS, 1946, 68 (02) :214-222
[9]   EXTENSIONS OF 2 FIXED POINT THEOREMS OF BROWDER,FE [J].
FAN, K .
MATHEMATISCHE ZEITSCHRIFT, 1969, 112 (03) :234-&
[10]  
Fan K., 1972, INEQUALITIES, VIII, P103