DYNAMIC SIMULATION OF AN ELECTRORHEOLOGICAL FLUID

被引:213
作者
BONNECAZE, RT [1 ]
BRADY, JF [1 ]
机构
[1] CALTECH,DEPT CHEM ENGN,PASADENA,CA 91125
关键词
D O I
10.1063/1.462070
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A molecular-dynamics-like method is presented for the simulation of a suspension of dielectric particles in a nonconductive solvent forming an electrorheological fluid. The method accurately accounts for both hydrodynamic and electrostatic interparticle interactions from dilute volume fractions to closest packing for simultaneous shear and electric fields. The hydrodynamic interactions and rheology are determined with the Stokesian dynamics methodology, while the electrostatic interactions, in particular, the conservative electrostatic interparticle forces, are determined from the electrostatic energy of the suspension. The energy of the suspension is computed from the induced particle dipoles by a method previously developed [R. T. Bonnecaze and J. F. Brady, Proc. R. Soc. London, Ser. A 430, 285 (1990)]. Using the simulation, the dynamics can be directly correlated to the observed macroscopic rheology of the suspension for a range of the so-called Mason number, Ma, the ratio of viscous to electrostatic forces. The simulation is specifically applied to a monolayer of spherical particles of areal fraction 0.4 with a particle-to-fluid dielectric constant ratio of 4 for Ma = 10(-4) to infinity. The effective viscosity of the suspension increases as Ma-1 or with the square of the electric field for small Ma and has a plateau value at large Ma, as is observed experimentally. This rheological behavior can be interpreted as Bingham plastic-like with a dynamic yield stress. The first normal stress difference is negative, and its magnitude increases as Ma-1 at small Ma with a large Ma plateau value of zero. In addition to the time averages of the rheology, the time traces of the viscosities are presented along with selected "snapshots" of the suspension microstructure. In particular, at small Ma, the suspension dynamics exhibit two distinct motions: a slow elastic-body-like deformation where electrostatic energy is stored, followed by a rapid microstructural rearrangement where energy is viscously dissipated. It is suggested that the observed dynamic yield stress is associated with these dynamics.
引用
收藏
页码:2183 / 2202
页数:20
相关论文
共 31 条
[1]   A MICROSCOPIC MODEL OF ELECTRORHEOLOGY [J].
ADRIANI, PM ;
GAST, AP .
PHYSICS OF FLUIDS, 1988, 31 (10) :2757-2768
[2]  
[Anonymous], 2002, ELECTRODYNAMICS CONT
[3]  
[Anonymous], 1975, CLASSICAL ELECTRODYN
[4]   SOME ELECTROHYDRODYNAMIC EFFECTS IN FLUID DISPERSIONS [J].
ARP, PA ;
FOISTER, RT ;
MASON, SG .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 1980, 12 (04) :295-356
[5]   STRESS SYSTEM IN A SUSPENSION OF FORCE-FREE PARTICLES [J].
BATCHELOR, GK .
JOURNAL OF FLUID MECHANICS, 1970, 41 :545-+
[6]   EFFECT OF BROWNIAN-MOTION ON BULK STRESS IN A SUSPENSION OF SPHERICAL-PARTICLES [J].
BATCHELOR, GK .
JOURNAL OF FLUID MECHANICS, 1977, 83 (NOV) :97-117
[7]   A METHOD FOR DETERMINING THE EFFECTIVE CONDUCTIVITY OF DISPERSIONS OF PARTICLES [J].
BONNECAZE, RT ;
BRADY, JF .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1990, 430 (1879) :285-313
[8]   THE EFFECTIVE CONDUCTIVITY OF RANDOM SUSPENSIONS OF SPHERICAL-PARTICLES [J].
BONNECAZE, RT ;
BRADY, JF .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1991, 432 (1886) :445-465
[9]  
BONNECAZE RT, IN PRESS J RHEOLOGY
[10]   DYNAMIC SIMULATION OF HYDRODYNAMICALLY INTERACTING SUSPENSIONS [J].
BRADY, JF ;
PHILLIPS, RJ ;
LESTER, JC ;
BOSSIS, G .
JOURNAL OF FLUID MECHANICS, 1988, 195 :257-280