2 NEW FINITE-DIFFERENCE SCHEMES FOR PARABOLIC EQUATIONS

被引:32
作者
CASH, JR
机构
关键词
D O I
10.1137/0721032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two new classes of finite difference schemes are applied to the numerical solution of parabolic partial differential equations. The formulas derived are self starting, are at least second order in time, are unconditionally stable and, unlike the Crank-Nicolson method, are L//0-stable in the sense of Gourlay and Morris. The stability of the new schemes is examined using a linear stability analysis and some numerical results are presented.
引用
收藏
页码:433 / 446
页数:14
相关论文
共 12 条
[1]  
[Anonymous], 1963, J AUSTR MATH SOC, DOI [DOI 10.1017/S1446788700027932, 10.1017/S1446788700027932]
[3]   LINEAR-COMBINATIONS OF GENERALIZED CRANK NICOLSON SCHEMES [J].
GOURLAY, AR ;
MORRIS, JL .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1981, 1 (03) :347-357
[4]   THE EXTRAPOLATION OF 1ST ORDER METHODS FOR PARABOLIC PARTIAL-DIFFERENTIAL EQUATIONS, .2. [J].
GOURLAY, AR ;
MORRIS, JL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1980, 17 (05) :641-655
[5]   EXTRAPOLATION OF 1ST ORDER METHODS FOR PARABOLIC PARTIAL-DIFFERENTIAL EQUATIONS .1. [J].
LAWSON, JD ;
MORRIS, JL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (06) :1212-1224
[7]  
LINIGER W, 1967, IBM RC1970 RES REP
[9]  
Norsett S. P., 1974, BIT (Nordisk Tidskrift for Informationsbehandling), V14, P63, DOI 10.1007/BF01933119
[10]  
NORSETT SP, 674 U TRONDH MATH CO