KAC-MOODY ALGEBRA AND EXTENDED YANG-BAXTER RELATIONS IN THE O(N) NON-LINEAR SIGMA-MODEL

被引:125
作者
MAILLET, JM
机构
关键词
D O I
10.1016/0370-2693(85)91075-5
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
引用
收藏
页码:137 / 142
页数:6
相关论文
共 16 条
[1]  
Baxter R. J., 1982, EXACTLY SOLVED MODEL
[2]   REMARKS ABOUT THE EXISTENCE OF NONLOCAL CHARGES IN 2-DIMENSIONAL MODELS [J].
BREZIN, E ;
ITZYKSON, C ;
ZINNJUSTIN, J ;
ZUBER, JB .
PHYSICS LETTERS B, 1979, 82 (3-4) :442-444
[3]   FIELD-THEORIES WITH AN INFINITE NUMBER OF CONSERVATION-LAWS AND BACKLUND TRANSFORMATIONS IN 2-DIMENSIONS [J].
DEVEGA, HJ .
PHYSICS LETTERS B, 1979, 87 (03) :233-236
[4]   CLASSICAL AND QUANTUM ALGEBRAS OF NON-LOCAL CHARGES IN SIGMA-MODELS [J].
DEVEGA, HJ ;
EICHENHERR, H ;
MAILLET, JM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 92 (04) :507-524
[5]  
DIRAC PAM, 1969, LECTURES QUANTUM MEC
[6]   DUAL SYMMETRY OF THE NONLINEAR SIGMA MODELS [J].
EICHENHERR, H ;
FORGER, M .
NUCLEAR PHYSICS B, 1979, 155 (02) :381-393
[7]  
FADDEEV LD, 1982, RECENT ADV FIELD THE
[8]  
GETMANOV BS, 1977, JETP LETT+, V25, P119
[9]   EXAMPLE OF A RELATIVISTIC, COMPLETELY INTEGRABLE, HAMILTONIAN SYSTEM [J].
LUND, F .
PHYSICAL REVIEW LETTERS, 1977, 38 (21) :1175-1178