THE QUANTUM DE-RHAM COMPLEXES ASSOCIATED WITH SLH(2)

被引:30
作者
KARIMIPOUR, V [1 ]
机构
[1] INST STUDIES THEORET PHYS & MATH,TEHRAN,IRAN
关键词
D O I
10.1007/BF00939696
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum de Rham complexes on the quantum plane and the quantum group itself are constructed for the nonstandard deformation of Fun(SI(2)). It is shown that in contrast to the standard q-deformation of SL(2), the above complexes are unique for SL(h)(2). Also, as a byproduct, a new deformation of the two-dimensional Heisenberg algebra is obtained which can be used to construct models of h-deformed quantum mechanics.
引用
收藏
页码:87 / 98
页数:12
相关论文
共 11 条
[1]   QUANTUM GROUP PARTICLES AND NON-ARCHIMEDEAN GEOMETRY [J].
AREFEVA, IY ;
VOLOVICH, IV .
PHYSICS LETTERS B, 1991, 268 (02) :179-187
[2]  
DEMIDOV EE, 1990, PROG THEOR PHYS SUPP, V102, P203
[3]  
Faddeev L., 1990, LENINGRAD MATH J, V1, P193
[4]  
MANIN Y, 1991, MPI9147
[5]   A ASTERISK-PRODUCT ON SL(2) AND THE CORRESPONDING NONSTANDARD QUANTUM-U(SL(2)) [J].
OHN, C .
LETTERS IN MATHEMATICAL PHYSICS, 1992, 25 (02) :85-88
[6]   DIFFERENTIAL GEOMETRY ON LINEAR QUANTUM GROUPS [J].
SCHUPP, P ;
WATTS, P ;
ZUMINO, B .
LETTERS IN MATHEMATICAL PHYSICS, 1992, 25 (02) :139-147
[7]   A Q-DEFORMED QUANTUM-MECHANICAL TOY MODEL [J].
SCHWENK, J ;
WESS, J .
PHYSICS LETTERS B, 1992, 291 (03) :273-277
[8]  
TAKHTAJAN LA, 1991, INTRO QUANTUM GROUPS
[9]  
Wess J., 1991, Nuclear Physics B, Proceedings Supplements, V18B, P302, DOI 10.1016/0920-5632(91)90143-3
[10]   DIFFERENTIAL-CALCULUS ON COMPACT MATRIX PSEUDOGROUPS (QUANTUM GROUPS) [J].
WORONOWICZ, SL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 122 (01) :125-170