STRUCTURAL CONSEQUENCES OF SEQUENCE PATTERNS IN THE FINGERPRINT REGION OF THE NUCLEOTIDE BINDING FOLD - IMPLICATIONS FOR NUCLEOTIDE SPECIFICITY

被引:157
作者
BAKER, PJ
BRITTON, KL
RICE, DW
ROB, A
STILLMAN, TJ
机构
基金
英国惠康基金;
关键词
STRUCTURE COMPARISON; NUCLEOTIDE SPECIFICITY; NUCLEOTIDE BINDING DOMAIN; SEQUENCE ALIGNMENT; HYDROGEN BONDING PATTERNS;
D O I
10.1016/0022-2836(92)90848-E
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The dinucleotide binding βαβ motif in the crystal structures of seven different enzymes has been analysed in terms of their three-dimensional structures and primary sequences. We have identified that the hydrogen bonding of the adenine ribose to the glycine-rich turn containing the fingerprint sequence GXGXXG/A occurs via a direct or indirect mechanism, depending on the nature of the fingerprint sequence but independent of coenzyme specificity. The major determinant of the type of interaction is the nature of the residue occupying the last position of the above fingerprint. In the NAD+-linked dehydrogenases, an acidic residue is commonly used to form important hydrogen bonds to the adenine ribose hydroxyls and, hitherto, this residue has been thought to be an indicator of NAD+ specificity. However, on the basis of the three-dimensional structure of the NAD+-linked glutamate dehydrogenase (GDH) from Clostridium symbiosum we have demonstrated that this residue is not a universal requirement for the construction of an NAD+ binding site. Furthermore, considerations of sequence homology unambiguously identify an equivalent acidic residue in both NADP+ and dual specificity glutamate dehydrogenases. The conservation of this residue in these enzymes, coupled to its close proximity to the 2′ phosphate implied by the necessary similarity in three-dimensional structure to C. symbiosum GDH, implicates this residue in the recognition of the 2′ phosphate either via water-mediated or direct hydrogen-bonding schemes. Analysis of the latter has led us to suggest that two patterns of recognition for the 2′ phosphate group of NADP+-binding enzymes may exist, which are distinguished by the ionization state of the 2′ phosphate. © 1992.
引用
收藏
页码:662 / 671
页数:10
相关论文
共 42 条
[1]   REFINED CRYSTAL-STRUCTURE OF DOGFISH M4 APO-LACTATE DEHYDROGENASE [J].
ABADZAPATERO, C ;
GRIFFITH, JP ;
SUSSMAN, JL ;
ROSSMANN, MG .
JOURNAL OF MOLECULAR BIOLOGY, 1987, 198 (03) :445-467
[2]  
ABOLA EE, 1987, CRYSTALLOGRAPHIC DAT, P107
[3]   HYDROGEN-BONDING IN GLOBULAR-PROTEINS [J].
BAKER, EN ;
HUBBARD, RE .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1984, 44 (02) :97-179
[4]   SUBUNIT ASSEMBLY AND ACTIVE-SITE LOCATION IN THE STRUCTURE OF GLUTAMATE-DEHYDROGENASE [J].
BAKER, PJ ;
BRITTON, KL ;
ENGEL, PC ;
FARRANTS, GW ;
LILLEY, KS ;
RICE, DW ;
STILLMAN, TJ .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1992, 12 (01) :75-86
[5]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542
[6]   REFINED CRYSTAL-STRUCTURE OF CYTOPLASMIC MALATE-DEHYDROGENASE AT 2.5-A RESOLUTION [J].
BIRKTOFT, JJ ;
RHODES, G ;
BANASZAK, LJ .
BIOCHEMISTRY, 1989, 28 (14) :6065-6081
[7]  
BIRKTOFT JJ, 1984, PEPT PROTEIN REV, V4, P1
[8]   RELATION BETWEEN STRUCTURE AND FUNCTION OF ALPHA-BETA-PROTEINS [J].
BRANDEN, CI .
QUARTERLY REVIEWS OF BIOPHYSICS, 1980, 13 (03) :317-338
[9]  
BRITTON KL, 1991, THESIS U SHEFFIELD
[10]   PROBING THE COENZYME SPECIFICITY OF GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASES BY SITE-DIRECTED MUTAGENESIS [J].
CORBIER, C ;
CLERMONT, S ;
BILLARD, P ;
SKARZYNSKI, T ;
BRANLANT, C ;
WONACOTT, A ;
BRANLANT, G .
BIOCHEMISTRY, 1990, 29 (30) :7101-7106