A UNIFYING APPROACH TO NONPARAMETRIC REGRESSION ESTIMATION

被引:38
作者
JENNENSTEINMETZ, C
GASSER, T
机构
关键词
D O I
10.2307/2290140
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:1084 / 1089
页数:6
相关论文
共 26 条
[1]   NONPARAMETRIC-ESTIMATION OF A REGRESSION FUNCTION [J].
CHENG, KF ;
LIN, PE .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 57 (02) :223-233
[2]   NONPARAMETRIC-ESTIMATION OF REGRESSION - BIBLIOGRAPHICAL SURVEY [J].
COLLOMB, G .
INTERNATIONAL STATISTICAL REVIEW, 1981, 49 (01) :75-93
[3]  
COLLOMB G, 1979, CR ACAD SCI A MATH, V289, P245
[4]   ESTIMATION BY NEAREST NEIGHBOR RULE [J].
COVER, TM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1968, 14 (01) :50-+
[5]  
GASSER T, 1985, J ROY STAT SOC B MET, V47, P238
[6]  
GASSER T, 1986, BIOMETRIKA, V73, P625
[7]  
GASSER T, 1984, SCAND J STAT, V11, P171
[8]  
Gasser T., 1979, SMOOTHING TECHNIQUES, V757, P23
[9]   OPTIMAL BANDWIDTH SELECTION IN NONPARAMETRIC REGRESSION FUNCTION ESTIMATION [J].
HARDLE, W ;
MARRON, JS .
ANNALS OF STATISTICS, 1985, 13 (04) :1465-1481
[10]   SMOOTHING NOISY DATA WITH SPLINE FUNCTIONS [J].
HUTCHINSON, MF ;
de Hoog, FR .
NUMERISCHE MATHEMATIK, 1985, 47 (01) :99-106